• Title/Summary/Keyword: Clock Design

Search Result 784, Processing Time 0.032 seconds

Design of Low-jilter DLL using Vernier Method (Vernier 방법을 이용한 Low-jitter DLL 구현)

  • 서승영;장일권;곽계달
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.83-86
    • /
    • 2000
  • This paper describes a delay-locked loop(DLL_) with low-jitter using Vernier Method. This DLL can be used to synchronize the internal clock to the external clock with very short time interval and fast lock-on. The proposed circuit was simulated in a 0.25 $\mu\textrm{m}$ CMOS technology to realize low-jitter. We verified 50-ps of time interval within 5 clock cycles of the clock as the simulation results.

  • PDF

Design of Duty Control Osci1lator For Liquid Crystal Display Systems (LCD System용 가변 Duty Oscillator의 설계)

  • 홍순양;조준동
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.41-44
    • /
    • 2001
  • 본 논문은 액정 Driver IC에 사용되a는 내부 기준 clock 발생 및 Voltage Converter에 boosting을 하기 위한 clock을 제공하는 Oscillator 설계 및 구현 하였다 LCD Driver IC에서 발생되는 Oscillator clock 은 고속의 clock신호는 필요로 하지 않으나 LCD display에 관련된 frame 주파수에 직접적인 영향을 주므로 중심 주파수 결정 및 duty비에 따른 주파수 제어가 매우 중요하다. 본 논문에서는 가변 duty를 적용하는 LCD system에 적용할 수 있는 가변 duty oscillator를 소개한다. Process는 0.35um, 12V공정을 사용하였다.

  • PDF

Post-Silicon Tuning Based on Flexible Flip-Flop Timing

  • Seo, Hyungjung;Heo, Jeongwoo;Kim, Taewhan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.11-22
    • /
    • 2016
  • Clock skew scheduling is one of the essential steps to be carefully performed during the design process. This work addresses the clock skew optimization problem integrated with the consideration of the inter-dependent relation between the setup and hold times, and clock to-Q delay of flip-flops, so that the time margin is more accurately and reliably set aside over that of the previous methods, which have never taken the integrated problem into account. Precisely, based on an accurate flexible model of setup time, hold time, and clock-to-Q delay, we propose a stepwise clock skew scheduling technique in which at each iteration, the worst slack of setup and hold times is systematically and incrementally relaxed to maximally extend the time margin. The effectiveness of the proposed method is shown through experiments with benchmark circuits, demonstrating that our method relaxes the worst slack of circuits, so that the clock period ($T_{clk}$) is shortened by 4.2% on average, namely the clock speed is improved from 369 MHz~2.23 GHz to 385 MHz~2.33 GHz with no time violation. In addition, it reduces the total numbers of setup and hold time violations by 27.7%, 9.5%, and 6.7% when the clock periods are set to 95%, 90%, and 85% of the value of Tclk, respectively.

A new BIST methodology for multi-clock system (내장된 자체 테스트 기법을 이용한 새로운 다중 클락 회로 테스트 방법론)

  • Seo, Il-Suk;Kang, Yong-Suk;Kang, Sung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.7
    • /
    • pp.74-80
    • /
    • 2002
  • VLSI intergrated circuits like SOC(system on chip) often require a multi-clock design style for functional or performance reasons. The problems of the clock domain transition due to clock skew and clock ordering within a test cycle may result in wrong results. This paper describes a new BIST(Built-in Self Test) architecture for multi-clock systems. In the new scheme, a clock skew is eliminated by a multi-capture. Therfore, it is possible to perform at-speed test for both clock inter-domain and clock intra-domain.

IEEE Standard Floating Poing ALU with 60MHz Clock Frequency (60MHz Clock 주파수의 IEEE 표준 Floating Point ALU)

  • Yong Surk Lee
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.11
    • /
    • pp.915-922
    • /
    • 1991
  • This research paper presents an ALU unit using 1.0$\mu$m CMOS technology capable of doing IEEE standard single and double precision floating poing calculation within 32ns (2 clock) at 60 MHz clock speed. This 32ns speed was achieved by using 9ns 1's complement arithmetic 54 bit carry select adder instead of previous 2's complement adders. On the first cycle, this adder is used for addition or subtraction and the second cycle uses this adder for rounding. This reduces the number of required adders from two to one. Speed improvement is 2 to 5 times compared with previous 40MHz design. Design goal was 60MHz, however, this unit is functioning at 80 MHz at room temperature.

  • PDF

Clock Distribution in High-Performance System Design (고성능 시스템 설계에서의 클럭 신호 분배)

  • Jeong Tai-Kyeong.T;Lee Jang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1633-1640
    • /
    • 2006
  • The problem of reducing power dissipation while simultaneously delivering acceptable levels of performance is becoming a critical concern in high pelf[mann system design. In this paper, we present this power dissipation problem from the clock generation and distribution side. We examine clock power efficiency and several applications as well as wireless communication circuits.

Design of Low- Power Interface using Clock Gating Based on ODC Computation (ODC 클럭 게이팅을 이용한 저전력 Interface 회로설계)

  • Yang, Hyun-Mi;Kim, Hi-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.597-598
    • /
    • 2008
  • In this paper, a sample design of I/O port of micro-processor using ODC(Output Don't Care) computation that is one of methods for Clock Gating applicable at the register transfer level(RTL). The ODC computation Method is applied at the point that estimate the value considering Don't Care Conditions from output of datapath to registers using clock in logic system. This paper also shows the results of reduce consumption power due to controlling clock that was supplied at registers. In Experimental results, ODC computation Method reduce power reductions of around 37.5%

  • PDF

A Design of Large Area Viewing LED Panel Control System (광시각용 LED 전광판제어 시스템 설계)

  • Lee, Su-Beom;Nam, Sang-Gil;Jo, Gyeong-Yeon;Kim, Jong-Jin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.5
    • /
    • pp.1351-1361
    • /
    • 1999
  • The wide spread of multimedia system demands a large area viewing display device which can inform a message to many people in open area. This paper is about the design of a large area viewing LED panel control system. The control system runs on 16 bit microprocessor MC68EC000 and has following functions: 16 line clock and time, 2 channel priority interrupt, 2 channel direct memory access, 2 channel 12 bit clock and timer, 2 channel infrared remocon receiver, 2 channel RS-232C with 16 byte FIFO, IBM PC/AT compatible keyboard interface, ISA bus, battery backuped real time clock, battery backuped 256 byte SRAM and watch dog timer. The core circuits are implemented to ASIC, considering lower cost, higher reliability, higher performance, smaller dimension, and lower power consumption. This is verified by simulation and fabricated in 0.6 um CMOS SOG processes. The total gate count is 39,083 and the clock frequency is 48 MGz. The fabricated ASIC is mounted on test board.

  • PDF

Design of the Clock Recovery Circuit for a 40 Gb/s Optical Receiver (40 Gb/s 광통신 수신기용 클락 복원 회로 설계)

  • 박찬호;우동식;김강욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.134-139
    • /
    • 2004
  • A clock recovery circuit for a 40 Gb/s optical receiver has been designed and implemented. The clock recovery circuit consists of pre-amplifiers, a nonlinear circuit with diodes, a bandpass filter and a clock amplifier. Before implementing the 40 Gb/s clock recovery circuit, a 10 Gb/s clock recovery circuit has been successfully implemented and tested. With the 40 Gb/s clock recovery circuit, when a 40 Gb/s signal of -10 dBm was applied to the input of the circuit, the 40 GHz clock was recovered with the -20 dBm output power after passing through the nonlinear circuit. The output signal from the nonlinear circuit passes through a narrow-band filter, and then amplified. The implemented clock recovery circuit is planned to be used for the input of a phase locked loop to further stabilize the recovered clock signal and to reduce the clock jitter.

Design of a 2.5 Gbps CMOS optical transmitter with 10:1 serializer using clock generation method (Reference clock 생성기를 이용한 10:1 데이터 변환 2.5 Gbps 광 송신기 설계)

  • Kang, Hyung-Won;Kim, Kyung-Min;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.159-165
    • /
    • 2005
  • The proposed optical transmitter is composed of FF(flip flop) , PLL (phase locked loop), reference clock generator, serializer and LD driver 10x250 Mb/s data arrays are translated to the 2.5 Gb/s data signal by serializer. In this case, 1 data bus is allocated usually as a reference clock for synchronization. In this proposed optical transmitter, 125 MHz reference clock is generated from 10x250 Mb/s data arrays by reference clock generator. From this method. absent of reference clock bus is available and more data transmission become possible. To achieve high speed operation, the serializer circuit is designed as two stacks. For 10:1 serialization, 10 clocks that have 1/10 lambda differences is essential, so the VCO (voltage controlled oscillator) composed of 10 delay buffers is designed. PLL is for runing at 250 MHz, and dual PFD(phase frequency detector) is adopted for fast locking time. The optical transmitter is designed by using 0.35 um CMOS technology.

  • PDF