• Title/Summary/Keyword: Circuits modeling

Search Result 175, Processing Time 0.032 seconds

Internal Resistive Source Modeling Technique for the Efficient Analysis of Planar Microwave Circuits Using FDTD (FDTD를 이용한 평판 구조 마이크로파 회로의 효율적인 해석을 위한 내부 저항 소스 모델링 방법)

  • 지정근;최재훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.227-236
    • /
    • 1999
  • The finite difference time domain method (FDTD) is widely applied to the analysis of various microwave circuits. However, previous source modeling techniques have a lot of constraints and difficulties to apply for general geometries. Therefore, the internal resistive source modeling technique is suggested for efficiently analyzing various types of microwave circuit in this paper. Its efficiency is proved by comparing the computation time with that of hard source modeling. Accuracy is also verified by comparing the scattering parameters with those of previous source modeling methods and measurements for several microwave circuits.

  • PDF

A Study on composition of the negative resistance circuit (부저항특성회로의 구성에 관한 연구)

  • 박의열
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.6
    • /
    • pp.11-24
    • /
    • 1973
  • A new simple technique for 2-terminal negative resistance cireait analysis and synthesis is developed, by using the equivalent e.m.f. defined as a function of input lotage or current variation. The technique is applied to design 2-terminal junction transistor negative resistance circuits based on the parameter control method. Modeling circuits for SCR, GTO-SCR and SSS are also derived from the proposed transistor negative resistance circuits, and the merits of the modeling circuits are discussed.

  • PDF

Simulation model of 7 Phase Brushless AC Motor Using Mixed Modeling Technique Based on Circuit and Equations (회로 및 수식 기반의 혼합 모델링 기법을 이용한 7상 영구자석 브러시리스 교류전동기의 시뮬레이션 모델)

  • Mok, Hyung-Soo;Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.149-155
    • /
    • 2007
  • The counter emf(electromotive forces) of a permanent magnet multi-phase brushless motor is generally a non-sinusoidal wave or a non-ideal trapezoid. So, conventional modeling using a sinusoidal wave or an ideal trapezoid counter emf can result in errors. In order to reduce modeling errors for simulation and analysis the properties of a multi-phase brushless AC motor, this paper proposes a phase variable model that is a mixed modeling technique using both Finite Element Analysis(FEA) based circuits and motor voltage equations. The phase model parameters including the counter emf voltage waveform are obtained by using of FEA, and the mixed modeling technique based on circuits and equations is used to implement a simulation model for multi-phase brushless AC motors with any counter emf voltage waveforms. Adequacy of the proposed model is established from the simulation and experimental results for a seven-phase brushless motor.

  • PDF

Fault Simulator for Domino CMOS Circuits (Domino CMOS 회로의 고장 시뮬레이터)

  • Park, D.G.;Lee, J.H.;Lee, H.J.;Lim, I.C.
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1516-1520
    • /
    • 1987
  • This paper proposes fault simulation algorithms for Domino CMOS circuits, The inputs having fanouts are described correctly in the algorithms by modeling the functional block in the Domino CMOS circuits as Modified dependency matrix. The proposed algorithms generate easily the test sequence which can detect the s-a-O, s-a-I, stuckopen faults in the Domino CMOS circuits.

  • PDF

Modeling and Prediction of Electromagnetic Immunity for Integrated Circuits

  • Pu, Bo;Kim, Taeho;Kim, SungJun;Kim, SoYoung;Nah, Wansoo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.54-61
    • /
    • 2013
  • An equivalent model has been developed to estimate the electromagnetic immunity for integrated circuits under a complex electromagnetic environment. The complete model is based on the characteristics of the equipment and physical configuration of the device under test (DUT) and describes the measurement setup as well as the target integrated circuits under test, the corresponding package, and a specially designed printed circuit board. The advantage of the proposed model is that it can be applied to a SPICE-like simulator and the immunity of the integrated circuits can be easily achieved without costly and time-consuming measurements. After simulation, measurements were performed to verify the accuracy of the equivalent model for immunity prediction. The improvement of measurement accuracy due to the added effect of a bi-directional coupler in the test setup is also addressed.

인조신경망을 이용한 좌심실보조장치의 동적 모델링

  • 김훈모
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.346-350
    • /
    • 1996
  • This paper presents a Neural Network Identification (NNI) method for modeling of highly complicated nonlinear and time varing human system with a pneumatically driven mock circulation system of Left Ventricular Assist Device(LVD). This system consists of electronic circuits and pneumatic driving circuits. The initation of systole and the pumping duration can be determined by the computer program. The line pressure from a pressure transducer inserted in the pneumatic line was recorded. System modeling is completed using the adaptively trained backpropagation learning algorithms with input variables, Heart Rate(HR), Systole-Diastole Rate(SDR), which can vary state of system, and preload, afterload, which indicate the systemic dynamic characteristics and output parameters are preload, afterload.

  • PDF

회로 및 시스템분야의 국내외 연구동향

  • 김정덕
    • 전기의세계
    • /
    • v.23 no.6
    • /
    • pp.18-19
    • /
    • 1974
  • 회로이론의 분야는 꾸준히 성장하여 왔고 System modeling과 system analysis가 새로운 분야로서 등장되어 IEEE에서도 1972. 9. 18. Circuits group를 circuits & Systems Society로 개칭하게 되었다. 회로이론과 그 기교는 비단 전기 및 전자공학에만 적용되는것이 아니라 대시스템분야, 생의학분야, 경제분야에도 공히 적용될 수 있다. 본고에서는 회로 및 시스템분야에 있었던 주요 연구경향을 1974 IEEE International Symposium on Circuits and System에 근거를 두고 미국중심으로 살펴보고 국내 전기 및 전자공학회지를 추적하여 최근의 국내 및 국외 연구동향에 대하여 알아보고자 한다.

  • PDF

Discrete Time Domain Modeling and Controller Design of Phase Shifted Full Bridge PWM Converter (위상천이 풀-브릿지 PWM 컨버터의 이산 시간 모델링 및 제어기 설계)

  • Lim, Jeong-Gyu;Lim, Soo-Hyun;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.135-137
    • /
    • 2007
  • A phase shifted full-bridge PWM converter (PSFBC) has been used as the most popular topology for many applications. But, for the reasons of the cost and performance, the control circuits for the PSFBC have generally been implemented using analog circuits. The studies on the digital control of the PSFBC were recently presented. However, they considered only the digital implementation of the analog controller. This paper presents the modeling and design of the digital controller for the PSFBC in the discrete time domain. The discretized PSFBC model is first derived considering the sampling effect. Based on this model, the digital controller is directly designed in discrete time domain. The simulation and experimental results are provided to verify the proposed modeling and controller design.

  • PDF

Output Signal Analysis for Variation of Resistance Passive Element in the R-L-C Equivalent Circuit Modeling under Temperature Accident Conditions in NPPs (원전 온도 사고 조건에서 R-L-C회로 모델링 등가 회로의 저항 수동 소자 변화에 대한 출력 신호 분석)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hee-Dong;Cho, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.600-602
    • /
    • 2006
  • Some abnormal signals diagnostics and analysis through an important equivalent circuits modeling for passive elements under severe accident conditions have been performed. Unlike the design basis accidents, there are inherently some uncertainties in the instrumentation capabilities under the accident conditions. So, the circuit simulation analysis and diagnosis methods are used to assess instruments in detail when they give apparently abnormal readings as an accident alternative method. The simulations can be useful to investigate what the signal and circuit characteristics would be when similar to a variety of symptoms that can result from the environmental conditions such as high temperature, humidity, and pressure condition. In this paper, a new simulator through an analysis of the important equivalent circuits modeling under temperature accident conditions has been designed, the designed simulator is composed of the LabVIEW code as a main tool and the out-put file of the Multi-SIM code as an engine tool is exported to in-put file of the LabVIEW code. The procedure for the simulator design was divided into two design steps, of which the first step was the diagnosis method, the second step was the circuit simulator for the signal processing tool. It has three main functions which are a signal processing tool, an accident management tool, and an additional guide from the initial screen. This simulator should be possible that it could be applied a output signal analysis to some transient signal by variation of the resistance passive elements in the R-L-C equivalent circuit modeling under various degraded conditions in NPPs.

  • PDF

Characterization of Microwave Active Circuits using the FDTD Method (FDTD를 이용한 마이크로파 능동 회로의 해석)

  • 황윤재;육종관;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.528-537
    • /
    • 2002
  • In this paper, the extended FDTD is used for the analysis of microwave circuits including active elements. Lumped elements such as R, L, C which are inserted into a microstrip line are analyzed with the FDTD lumped element modeling. Parasitic capacitance and inductance could be obtained using network modeling and so it is sure that FDTD lumped element modeling makes it possible to get more accurate data which include parasite components. Moreover, a balanced mixer using two diodes that are modeled by an extended FDTD is designed and the more exact characteristic of the mixer is acquired than in current circuit simulator.