Characterization of Microwave Active Circuits using the FDTD Method

FDTD를 이용한 마이크로파 능동 회로의 해석

  • 황윤재 (연세대학교 전기전자공학부) ;
  • 육종관 (연세대학교 전기전자공학부) ;
  • 박한규 (연세대학교 전기전자공학부)
  • Published : 2002.07.01

Abstract

In this paper, the extended FDTD is used for the analysis of microwave circuits including active elements. Lumped elements such as R, L, C which are inserted into a microstrip line are analyzed with the FDTD lumped element modeling. Parasitic capacitance and inductance could be obtained using network modeling and so it is sure that FDTD lumped element modeling makes it possible to get more accurate data which include parasite components. Moreover, a balanced mixer using two diodes that are modeled by an extended FDTD is designed and the more exact characteristic of the mixer is acquired than in current circuit simulator.

본 논문에서는 능동소자를 포함하는 마이크로파 회로의 주파수 특성을 해석하기 위하여 확장된 유한차분 시간영역법 (FDTD) 을 이용했다. R, L, C와 같은 집중소자가 전송선로에 삽입된 FDTD 집중소자 모델링을 통해 하이브리드 회로 해석에 대한 기초 연구를 수행하였고, 네트워크 모델링을 이용하여 기생 커패시턴스와 인덕턴스의 값을 추출함으로써 보다 정확한 기생, 방사, 결합까지 고려하는 FDTD만의 고유한 주파수 응답을 확인할 수 있었다. 또한 FDTD를 이용하여 모델링된 다이오드를 사용한 평형 혼합기를 설계하여 상용 회로 시뮬레이터보다 정확하고 실제적인 회로의 주파수 응답을 획득하였다.

Keywords

References

  1. IEEE Trans. Microwave Theory Tech. v.40 no.1 On the Design of Planar Microwave Component Using Multilayer Structures W. Schwab;W. Menzel
  2. 제3회 대한전기학회 MEMS 심포지엄 논문집 v.2 no.1 MEMS Devices for Microwave and Millimeter-Wave Systems: Review J.-G. Yook
  3. IEEE Trans. Microwave Theory Tech. v.42 no.9 Characterization of High Frequency Interconnects Using Finite Difference Time Domain and Finite Element Method J.-G. Yook;N. I. Dib;P. B. Katehi
  4. Numerical Techniques for Microwave and Millimeter-Wave Passive Structures T. Itoh
  5. IEEE Trans. Microwave Theory Tech v.36 no.12 Time-Domain Finite-Difference Approach to the calculation of the Frequency-Dependent Characteristics of Microstrip Discontinuities X. Zhang;K. K. Mei https://doi.org/10.1109/22.17413
  6. The Finite Difference Time Domain Method for Electromagnetics K. S. Kunz;R. J. Luebbers
  7. IEEE Trans. Microwave Theory Tech v.36 no.4 Equivalent Transformations for the Mixed Lumped Richards Section and Distributed Transmission Line Y. Nemoto(et al.)
  8. IEEE Trans. Microwave Theory Tech v.38 no.3 A Finite Difference Transmission Line Matrix method Incorporating a Nonlinear Device Model R. H. Voelker;R. J. Lomax https://doi.org/10.1109/22.45349
  9. IEEE Trans. Microwave Theory Tech. v.40 Extending the two dimensional FD-TD method to hybrid electromagnetic systems with active and passive lumped elements W. Sui;D. A. Christensen;C. H. Durney https://doi.org/10.1109/22.127522
  10. IEEE Trans. Microwave Theory Tech. v.42 FD-TD Modeling of Digital Signal Propagation in 3-D Circuits with passive and active loads M. J. Piket-May;A. Taflove;J. Baron https://doi.org/10.1109/22.297814
  11. IEEE Trans. Antennas and Propagation v.40 no.9 Superaborption-A Method to Improve Absorbing Boundary Conditions J. Fang;K. K. Mei https://doi.org/10.1109/8.166524
  12. Microwave Engineering(2nd Edition) D. M. Pozar
  13. Microstrip Lines and Slotlines K. C. Gupta;I. Bahl;R. Garg;P. Bhartia
  14. Serenade Ansoft