• Title/Summary/Keyword: Circuit Complexity

Search Result 241, Processing Time 0.049 seconds

Gate Cost Reduction Policy for Direct Irreversible-to-Reversible Mapping Method without Reversible Embedding (가역 임베딩 없는 직접적 비가역-가역회로 매핑 방법의 게이트비용 절감 방안)

  • Park, Dong-Young;Jeong, Yeon-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.11
    • /
    • pp.1233-1240
    • /
    • 2014
  • For the last three decades after the advent of the Toffoli gate in 1980, while many reversible circuit syntheses have been presented reversible embedding methods onto suitable reversible functions, only a few proposed direct irreversible-to-reversible mapping methods without reversible embedding. In this paper we present two effective policies to reduce the gate cost and complexity for the existing direct reversible mapping methods without reversible embedding. In order to develop new cost reduction policies we consider the cost influence of Toffoli module according to NOT gate arrangement in classical circuits. From this we deduced an inverse proportional property between inverting input numbers of classical AND/OR gates and reversible Toffoli module cost based on a fact - the inverting inputs of classical AND(OR) gates increase(decrease) the Toffoli module cost. We confirm the applications of the inverting input rearrangement and maximum fan-out policies preceding direct reversible mapping will be effective method to improve the reversible Toffoli module cost and complexity with the parallel using of the fan-out and supercell ones.

A Study on the Parallel Routing in Hybrid Optical Networks-on-Chip (하이브리드 광학 네트워크-온-칩에서 병렬 라우팅에 관한 연구)

  • Seo, Jung-Tack;Hwang, Yong-Joong;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.25-32
    • /
    • 2011
  • Networks-on-chip (NoC) is emerging as a key technology to overcome severe bus traffics in ever-increasing complexity of the Multiprocessor systems-on-chip (MPSoC); however traditional electrical interconnection based NoC architecture would be faced with technical limits of bandwidth and power consumptions in the near future. In order to cope with these problems, a hybrid optical NoC architecture which use both electrical interconnects and optical interconnects together, has been widely investigated. In the hybrid optical NoCs, wormhole switching and simple deterministic X-Y routing are used for the electrical interconnections which is responsible for the setup of routing path and optical router to transmit optical data through optical interconnects. Optical NoC uses circuit switching method to send payload data by preset paths and routers. However, conventional hybrid optical NoC has a drawback that concurrent transmissions are not allowed. Therefore, performance improvement is limited. In this paper, we propose a new routing algorithm that uses circuit switching and adaptive algorithm for the electrical interconnections to transmit data using multiple paths simultaneously. We also propose an efficient method to prevent livelock problems. Experimental results show up to 60% throughput improvement compared to a hybrid optical NoC and 65% power reduction compared to an electrical NoC.

Design of 3-bit Arbitrary Logic Circuit based on Single Layer Magnetic-Tunnel-Junction Elements (단층 입력 구조의 Magnetic-Tunnel-Junction 소자를 이용한 임의의 3비트 논리회로 구현을 위한 자기논리 회로 설계)

  • Lee, Hyun-Joo;Kim, So-Jeong;Lee, Seung-Yeon;Lee, Seung-Jun;Shin, Hyung-Soon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.1-7
    • /
    • 2008
  • Magnetic Tunneling Junction (MTJ) has been used as a nonvolatile universal storage element mainly in memory technology. However, according to several recent studies, magneto-logic using MTJ elements show much potential in substitution for the transistor-based logic device. Magneto-logic based on MTJ can maintain the data during the power-off mode, since an MTJ element can store the result data in itself. Moreover, just by changing input signals, the full logic functions can be realized. Because of its programmability, it can embody the reconfigurable magneto-logic circuit in the rigid physical architecture. In this paper, we propose a novel 3-bit arbitrary magneto-logic circuit beyond the simple combinational logic or the short sequential one. We design the 3-bit magneto-logic which has the most complexity using MTJ elements and verify its functionality. The simulation results are presented with the HSPICE macro-model of MTJ that we have developed in our previous work. This novel magneto-logic based on MTJ can realize the most complex logic function. What is more, 3-bit arbitrary logic operations can be implemented by changing gate signals of the current drivel circuit.

A Design of Parameterized Viterbi Decoder using Hardware Sharing (하드웨어 공유를 이용한 파라미터화된 비터비 복호기 설계)

  • Park, Sang-Deok;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.93-96
    • /
    • 2008
  • This paper describes an efficient design of a multi-standard Viterbi decoder that supports multiple constraint lengths and code rates. The Viterbi decode. is parameterized for the code rates 1/2, 1/3 and constraint lengths 7, 9, thus it has four operation modes. In order to achieve low hardware complexity and low power, an efficient architecture based on hardware sharing techniques is devised. Also, the optimization of ACCS (Accumulate-Subtract) circuit for the one-point trace-back algorithm reduces its area by about 35% compared to the full parallel ACCS circuit. The parameterized Viterbi decoder core has 79,818 gates and 25,600 bits memory, and the estimated throughput is about 105 Mbps at 70 MHz clock frequency.

  • PDF

A Study on the Process Variation Analysis for CNTFET-based Circuit Design (CNTFET 기반 회로 설계를 위한 공정 편차 분석에 관한 연구)

  • Cho, Geunho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.98-103
    • /
    • 2018
  • The CNTFET, which is widely recognized as a next-generation semiconductor, has a structure that can improve performance by positioning CNTs between the source and drain of a conventional MOSFET. However, positioning CNTs increases the complexity of a CNTFET's structure, and the process variation changes the complex structure into various shapes; so, when CNTFET device performance is analyzed, it requires more computation than that of a conventional MOSFET. These problems greatly increase the simulation time necessary for the analysis, and sometimes that analysis cannot be performed using an existing tool; they are therefore important obstacles to designing a circuit using a CNTFET. In this study, we will show that the existing Linear Programming methodology can be utilized to solve the long simulation time problem and discuss the effect of the suggested method in detail. Simulation results show that the Linear Programming method can reduce the number of simulation about 2.5 times when the maximum number of CNT is changed from 6 to 12.

A study on Identifying Undetectable Faults Using Uninitializable Flip-Flops (초기화가 불가능한 풀립플롭을 이용한 시험 불가능 고장 검출에 관한 연구)

  • Lee, Jae-Hun;Jo, Jin-U
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.5
    • /
    • pp.1371-1379
    • /
    • 1997
  • Undetectable faults in a digital circuit are faults that no input patterms can detect.Identifying these faults in test geferation process is very time- consuming especially for sequential circuits .In this paper we present a new algorithm to identify unedtectable faults in sequential cirouits .In the alorithm. we identify uninitializable fip-flops and then, faults that prevent intialization of the fkip-flops(FPIs)are identified, finally propagation path of the FPI is checked. Time complexity of this algorithm is porportional to the product of the number of flip flops with at lest a self loop and the number of gates in the circuit. Experiments were performed on the ISCAS89 benchmark ciruits to show the feadibility of the proposed algorithm.We could identify large amount of undetectable faults(up to 50% of the number of flip-flops)in circuits with uninitializable flip-flops. Consider-ing that most of the time in test generation is cinsumed in identifying undetecatable faults, performance of test generator can be improved by using this algorithm as a pre-processing of test generation.

  • PDF

Efficient and Low-Cost Metal Revision Techniques for Post Silicon Repair

  • Lee, Sungchul;Shin, Hyunchul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.322-330
    • /
    • 2014
  • New effective techniques to repair "small" design errors in integrated circuits are presented. As semiconductor chip complexity increases and the design period becomes tight, errors frequently remain in a fabricated chip making revisions required. Full mask revision significantly increases the cost and time-to-market. However, since many "small" errors can be repaired by modifying several connections among the circuit blocks and spare cells, errors can frequently be repaired by revising metal layers. Metal only revision takes significantly less time and involves less cost when compared to full mask revision, since mask revision costs multi-million dollars while metal revision costs tens of thousand dollars. In our research, new techniques are developed to further reduce the number of metal layers to be revised. Specifically, we partition the circuit blocks with higher error probabilities and extend the terminals of the signals crossing the partition boundaries to the preselected metal repair layers. Our partitioning and pin extension to repair layers can significantly improve the repairability by revising only the metal repair layers. Since pin extension may increase delay slightly, this method can be used for non-timing-critical parts of circuits. Experimental results by using academia and industrial circuits show that the revision of the two metal layers can repair many "small" errors at low-cost and with short revision time. On the average, when 11.64% of the spare cell area and 24.72% of the extended pins are added to the original circuits, 83.74% of the single errors (and 72.22% of the double errors) can be corrected by using two metal revision. We also suggest methods to use our repair techniques with normal commercial vender tools.

An Efficient Motion Estimation Method which Supports Variable Block Sizes and Multi-frames for H.264 Video Compression (H.264 동영상 압축에서의 가변 블록과 다중 프레임을 지원하는 효율적인 움직임 추정 방법)

  • Yoon, Mi-Sun;Chang, Seung-Ho;Moon, Dong-Sun;Shin, Hyun-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.58-65
    • /
    • 2007
  • As multimedia portable devices become popular, the amount of computation for processing data including video compression has significantly increased. Various researches for low power consumption of the mobile devices and real time processing have been reported. Motion Estimation is responsible for 67% of H.264 encoder complexity. In this research, a new circuit is designed for motion estimation. The new circuit uses motion prediction based on approximate SAD, Alternative Row Scan (ARS), DAU, and FDVS algorithms. Our new method can reduce the amount of computation by 75% when compared to multi-frame motion estimation suggested in JM8.2. Furthermore, optimal number and size of reference frame blocks are determined to reduce computation without affecting the PSNR. The proposed Motion Estimation method has been verified by using the hardware and software Co-Simulation with iPROVE. It can process 30 CIF frames/sec at 50MHz.

Development of Large Signal Model Extractor and Small Signal Model Verification for GaAs FET Devices (GaAs FET소자 모델링을 위한 소신호 모델의 검증과 대신호 모델 추출기 개발)

  • 최형규;전계익;김병성;이종철;이병제;김종헌;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.787-794
    • /
    • 2001
  • In this paper, the development of large-signal model extractor for GaAs FET device through the Monolithic Microwave integrated Circuit(MMIC) is presented. The measurement program controlled by personal computer is developed for the processing of an amount of measured data, and the de-embedding algorithm is added to the program for voltage dropping as attached series resistance on measurement system. The small-signal model parameters are typically consisted of 7 elements that are considered as complexity of large-signal model and its the accuracy of the small-signal model is verified through comparing with measured data as varied bias point. The fitting function model, one of the empirical model, is used for quick simulation. In the process of large-signal model parameter extraction, one-dimensional optimization method is proposed and optimized parameters are extracted. This study can reduce the modeling and measuring time and can secure a suitable model for circuit.

  • PDF

An Advanced Paradigm of Electronic System Level Hardware Description Language; Bluespec SystemVerilog (진화한 설계 패러다임의 블루스펙 시스템 레벨 하드웨어 기술 언어)

  • Moon, Sangook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.757-759
    • /
    • 2013
  • Until just a few years ago, digital circuit design techniques in register transfer level using Verilog or VHDL have been recognized as the up-to-date way compared with the traditional schematic design, and truly they have been used as the most popular skill for most chip designs. However, with the advent of era in which the complexity of semiconductor chip counts over billion transistors with advanced manufacturing technology, designing in register transfer level became too complex to meet the requirements of the needs, so the design paradigm has to change so that both design and synthesis can be done in higher level of abstraction. Bluespec SystemVerilog (BSV) is the only HDL which enables both circuit design and generating synthesizable code in the system level developed so far. In this contribution, I survey and analyze the features which supports the new paradigm in the BSV HDL, not very familiar to industry yet.

  • PDF