• 제목/요약/키워드: Chlorpyrifos

검색결과 210건 처리시간 0.028초

Development, Validation, and Application of a Portable SPR Biosensor for the Direct Detection of Insecticide Residues

  • Yang, Gil-Mo;Cho, Nam-Hong
    • Food Science and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.1038-1046
    • /
    • 2008
  • This study was carried out to develop a small-sized biosensor based on surface plasmon resonance (SPR) for the rapid identification of insecticide residues for food safety. The SPR biosensor module consists of a single 770 nm-light emitting diodes (LED) light source, several optical lenses for transferring light, a hemisphere sensor chip, photo detector, A/D converter, power source, and software for signal processing using a computer. Except for the computer, the size and weight of the sensor module are 150 (L)$\times$70 (W)$\times$120 (H) mm and 828 g, respectively. Validation and application procedures were designed to assess refractive index analysis, affinity properties, sensitivity, linearity, limits of detection, and robustness which includes an analysis of baseline stability and reproducibility of ligand immobilization using carbamate (carbofuran and carbaryl) and organophosphate (cadusafos, ethoprofos, and chlorpyrifos) insecticide residues. With direct binding analysis, insecticide residues were detected at less than the minimum 0.01 ppm and analyzed in less than 100 sec with a good linear relationship. Based on these results, we find that the binding interaction with active target groups in enzymes using the miniaturized SPR biosensor could detect low concentrations which satisfy the maximum residue limits for pesticide tolerance in Korea, Japan, and the USA.

Reduction of Pesticide Residues in the Production of Red Pepper Powder

  • Chun, Mi-Hwa;Lee, Mi-Gyung
    • Food Science and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.57-62
    • /
    • 2006
  • Six organophosphorus, one organochlorine, and three synthetic pyrethroid pesticides were analyzed for their residues during washing and hot-air drying of red peppers conducted in the production of powder. The residue ratio in organophosphorus pesticides was 33% in chlorpyrifos, 31 % in diazinon, 50% in methidathion, 80% in EPN, 28% in fenitrothion, and 60% in profenofos. The ratio in pyrethroids was 109% in cypermethrin, 102% in deltamethrin, and 106% in fenvalerate. That in organochlorine was 56% in ${\alpha}$-endosulfan and 90% in ${\beta}$-endosulfan. The results were greatly different between organophosphorus and pyrethroid pesticides. UV irradiation along with hot-air drying brought about a remarkable reduction of the residues, up to 70% as compared with hot-air drying only. The removal effect was most remarkable in pyrethroids, which are hardly removed by hot-air drying. The color of the pepper was not changed during UV irradiation. The use of oxidizing agents such as hydrogen peroxide or chlorine dioxide during washing did not show a remarkable removal of residues. The residue ratio was not affected whether the pesticide is contaminated artificially or naturally.

Development of Colorimetric Paper Sensor for Pesticide Detection Using Competitive-inhibiting Reaction

  • Kim, Hyeok Jung;Kim, Yeji;Park, Su Jung;Kwon, Chanho;Noh, Hyeran
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.326-331
    • /
    • 2018
  • Contamination by pesticides is an everincreasing problem associated with fields of environmental management and healthcare. Accordingly, appropriate treatments are in demand. Pesticide detection methods have been researched extensively, aimed at making the detection convenient, fast, cost-effective, and easy to use. Among the various detecting strategies, paper-based assay is potent for real-time pesticide sensing due to its unique advantages including disposability, light weight, and low cost. In this study, a paper-based sensor for chlorpyrifos, an organophosphate pesticide, has been developed by layering three sheets of patterned plates. In colorimetric quantification of pesticides, the blue color produced by the interaction between acetylcholinesterase and indoxyl acetate is inhibited by the pesticide molecules present in the sample solutions. With the optimized paper-based sensor, the pesticide is sensitively detected (limit of detection =8.60 ppm) within 5min. Furthermore, the shelf life of the device is enhanced to 14 days after from the fabrication, by treating trehalose solution onto the deposited reagents. We expect the paper-based device to be utilized as a first-screening analytic device for water quality monitoring and food analysis.

Advanced Bioremediation Strategies for Organophosphorus Compounds

  • Anish Kumar Sharma;Jyotsana Pandit
    • 한국미생물·생명공학회지
    • /
    • 제51권4호
    • /
    • pp.374-389
    • /
    • 2023
  • Organophosphorus (OP) pesticides, particularly malathion, parathion, diazinon, and chlorpyrifos, are widely used in both agricultural and residential contexts. This refractory quality is shared by certain organ phosphorus insecticides, and it may have unintended consequences for certain non-target soil species. Bioremediation cleans organic and inorganic contaminants using microbes and plants. Organophosphate-hydrolyzing enzymes can transform pesticide residues into non-hazardous byproducts and are increasingly being considered viable solutions to the problem of decontamination. When coupled with system analysis, the multi-omics technique produces important data for functional validation and genetic manipulation, both of which may be used to boost the efficiency of bioremediation systems. RNA-guided nucleases and RNA-guided base editors include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR), which are used to alter genes and edit genomes. The review sheds light on key knowledge gaps and suggests approaches to pesticide cleanup using a variety of microbe-assisted methods. Researches, ecologists, and decision-makers can all benefit from having a better understanding of the usefulness and application of systems biology and gene editing in bioremediation evaluations.

Cobalt Phthalocyanine 탄소유기 전극을 이용한 농약 잔류량 측정 센서개발 (Development of Electro-Biosensor for the Residual Pesticides using Organic Carbon and Cobalt Phthalocyanine)

  • 유영훈;조형준;박원표;현해남
    • 한국환경농학회지
    • /
    • 제29권1호
    • /
    • pp.72-76
    • /
    • 2010
  • 본 연구에서는 탄소 유기물과 CoPh를 혼합하여 농약 잔류량을 측정 할 수 있는 바이오센서를 구현 하였다. 작동 전극은 탄소유기물과 CoPh를 섞어 사용하였고 비율은 CoPh를 7%로 제작하였다. CoPh가 7%인 경우 저농도 thiocholine 농도에서도 민감하게 반응하였다. 대표적인 농약인 카보후란에 대하여 센서의 감도 한계는 약$0.5{\mu}g/L$ 수준이며, 농약 농도에 따른 전극의 출력이 선형적인 결과를 얻었다. 또한 EPN 및 클로로피리포스 농약에 대하여 실험 한 결과 카보후란과 같이 농도에 따라 효과적으로 반응하는 것을 확인하였다. 이러한 센서는 현재 농약 잔류량 측정에 사용되는 비색법과 비교하여도 감도 및 선형성 면에서 뒤떨어지지 않으며, 간이 농약 잔류량 측정기 센서로 사용가능성이 있다.

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권1호
    • /
    • pp.71-80
    • /
    • 2011
  • Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.

광주지역 유통 농산물의 농약 잔류실태 조사연구 (A Survey on Pesticide Residues of Commercial Agricultural Products in Gwangju Area)

  • 김종필;강경리;양용식;이향희;정재근;김은선
    • 한국식품위생안전성학회지
    • /
    • 제20권3호
    • /
    • pp.165-174
    • /
    • 2005
  • This survey was conducted to monitor the current status of pesticide residues in agricultural products collected in wholesale markets and big retailers in Gwangju, in 2004. A total of 751 samples was analyzed by multiresidue method. Vegetables and fruits accounted for the largest proportion of the commodities analyzed and those two commodity groups comprised 604 $(80\%)\;and\;83\;(11\%)$ of the total number of 751 samples. Of these 751 samples, 112 samples $(14.9\%)$ had pesticide residues and 29 samples $(3.9\%)$ had violative residues. The detection rate was the highest $25\%$ in January and the lowest $9.5\%$ in June. The violation rate was the highest $7.0\%$ in March and the lowest $0\%$ in April. The violation rate in wholesale products was higher than that in big retailer products, $5.8\%$ verses $3.5\%$. And of 112 samples with pesticide residues, the agricultural product in which the pesticide residues were the most flequently detected was perilla leaf $(17.9\%)$ followed by korean lettuce $(16.1\%)$, spinach $(8.0\%)$ and korean cabbage $(5.4\%)$ and among 112 samples, 22 samples $(20\%)$ had more than one pesticide. Procymidone $(20.3\%)$, endosulfan $(18.2\%)$, dimethomorph $(13.3\%)$, chlorpyrifos $(7.7\%)$ and azoxystrobin $(6.3\%)$ were the most frequently found in agricultural product analyzed.

Comparative Estimation of Exposure Level and Health Risk Assessment of Highly Produced Pesticides to Agriculture Operators by Using Default Dermal Absorption Rate or Actual Measurement Values

  • Kim, Su-Hyeon;Lee, Chang-Hun;Kim, Ki-Hun;Jeong, Sang-Hee
    • 대한의생명과학회지
    • /
    • 제22권4호
    • /
    • pp.199-206
    • /
    • 2016
  • Pesticides are widely used to prevent loss of agricultural production but extensive exposure can induce health problems to pesticide operators. This study was performed to evaluate the health risk of highly produced pesticides used in fruit growing farm land by comparison of estimated exposure level with AOEL using KO-POEM program. AOEL was driven based on NOAEL of each pesticide evaluated by JMPR, EFSA or KRDA. In calculation of exposure level, types of formulation, dilution factors, spraying duration and motor type and exposure protection device were allocated according to actual condition of use. Dermal absorption rate was differently applied among EFSA default values (25% or 75%), general default value (10%) or real test result values to know the plausibility of default values and safety of pesticide to operators in outline. Twenty pesticide ingredients (fungicides and insecticides) were produced more than 30 tons per year, which were mancozeb, chlorothalonil, imidaclopirid and etc in order. Dermal absorption rates obtained from studies were various from 0.07 to 81% but mostly under 10%. The estimated exposure levels showed big differences more than 10 times higher when using EFSA default rate and up to 5 times higher when using general rate of 10% comparing using rates of test results. Mancozeb, chlorthalonil, diazinon and chlorpyrifos presented still higher exposure level than AOEL even when using test absorption rate from study, which suggests that re-evaluation of AOEL or dermal exposure absorption rate or strict management are required for health protection of operators who use those four pesticides in farm land.

바퀴(Blattella germanica L.)의 살충제 저항성에 관한 연구. 3. Esterase활성비교 (Studies on the Insecticide Resistance of the German Cockroach(Blattella germanica L.). III. Comparison of Esterase Activity)

  • 방종렬;김정화;이형래
    • 한국응용곤충학회지
    • /
    • 제32권3호
    • /
    • pp.265-270
    • /
    • 1993
  • 바퀴(Blattella germanica L.)의 살충제 저항성 기구를 구명하고자 chlorpyrifos와 permethrin 살충제로 누대선ㅂㄹ하여 얻어진 저항성 바퀴를 대상으로 저항성 기작에 관여하는 esterase 활성변화에 관하여 실험한 결과는 다음과 같다. Filter paper test 방법을 통한 esterase-$\alpha$의 활성은 chlorpyrifos와 permethrin 도태계통에서 각각 2.65배, 1.82배로 감수성계통보다 증가하였다. Spectrophotometer 방법을 통한 esterase의 활성은 감수성계통보다 chlorpyrifos 도태계통에서 $\alpha$- 및 $\beta$-Naphthyl acetate에 대하여 각각 2.34배, 5.28배, permethrin 도태계통에서는 1.48배, 2.2배 증가하였다. 전기영동 실험을 통한 esterase isozyme pattern은 모두 5개의 band가 분리 검출되었다. Rc와 Rp계통에서는 감수성계통에서 뚜렷하게 검출되지 않은 Est-2와 Est-3 band가 검출되었으며, Rp계통에서는 감수성과 Rc계통에서 검출된 Est-5 band가 검출되지 않았다.

  • PDF

Reproductive Toxicity Evaluation of Pestban Insecticide Exposure in Male and Female Rats

  • Morgan, Ashraf M.;El-Aty, A.M. Abd
    • Toxicological Research
    • /
    • 제24권2호
    • /
    • pp.137-150
    • /
    • 2008
  • Sexually mature male and female rats were orally intubated with the organophosphorus insecticide, Pestban at a daily dosage of 7.45 or 3.72 mg/kg bwt, equivalent to 1/20 and 1/40 $LD_{50}$, respectively. Male rats were exposed for 70 days, while the female rats were exposed for 14 days, premating, during mating and throughout the whole length of gestation and lactation periods till weaning. The results showed depressed acetylcholinesterase(AChE) activity in the brain of parents, fetuses and their placentae in a dose-dependent manner. The fertility was significantly reduced with increasing the dose in both treated groups, with more pronounced suppressive effects in the male treated group. The number of implantation sites and viable fetuses were significantly reduced in pregnant females of both treated groups. However, the number of resorptions, dead fetuses, and pre-and postimplantation losses were significantly increased. The incidence of resorptions was more pronounced in treated female compared to male group and was dose dependant. The behavioral responses as well as fetal survival and viability indices were altered in both treated groups during the lactation period. The incidence of these effects was more pronounced in the treated female group and occurred in a dose-related manner. The recorded morphological, visceral, and skeletal anomalies were significantly increased with increasing the dose in fetuses of both treated groups, with more pronounced effects on fetuses of treated females. In conclusion, the exposure of adult male and female rats to Pestban would cause adverse effects on fertility and reproduction.