Acknowledgement
Supported by : Ministry of SMEs and Startups(MSS)
References
- Schreinemachers, P. & Tipraqsa, P. Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy 37, 616-626 (2012). https://doi.org/10.1016/j.foodpol.2012.06.003
- Popp, J., Peto, K. & Nagy, J. Pesticide productivity and food security: a Review. Agron. Sustainable Dev. 33, 243-255 (2013). https://doi.org/10.1007/s13593-012-0105-x
- Jeyaratnam, J. Health problems of pesticide usage in the Third World. Br. J. Ind. Med. 42, 505-506 (1985).
- Ecobichon, D.J. Pesticide use in developing countries. Toxicology 160, 27-33 (2001). https://doi.org/10.1016/S0300-483X(00)00452-2
- Eddleston, M. et al. Pesticide poisoning in the developing world - a minimum pesticides list. The Lancet 360, 1163-1167 (2002). https://doi.org/10.1016/S0140-6736(02)11204-9
- Martinez Andres, W., Phillips Scott, T., Butte Manish, J. & Whitesides George, M. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318-1320 (2007). https://doi.org/10.1002/anie.200603817
- Chen, G.-H. et al. Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86, 6843-6849 (2014). https://doi.org/10.1021/ac5008688
- Jokerst, J.C. et al. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem. 84, 2900-2907 (2012). https://doi.org/10.1021/ac203466y
- Jayawardane, B.M., Wei, S., McKelvie, I.D. & Kolev, S.D. Microfluidic paper-based analytical device for the determination of nitrite and nitrate. Anal. Chem. 86, 7274-7279 (2014). https://doi.org/10.1021/ac5013249
-
Peters, K.L. et al. Simultaneous colorimetric detection of improvised explosive compounds using microfluidic paper-based analytical devices (
${\mu}PADs$ ). Anal. Methods 7, 63-70 (2015). https://doi.org/10.1039/C4AY01677G - Wu, Y., Sun, Y., Xiao, F., Wu, Z. & Yu, R. Sensitive inkjet printing paper-based colormetric strips for acetylcholinesterase inhibitors with indoxyl acetate substrate. Talanta 162, 174-179 (2017). https://doi.org/10.1016/j.talanta.2016.10.011
- Hossain, S.M.Z., Luckham, R.E., McFadden, M.J. & Brennan, J.D. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal. Chem. 81, 9055-9064 (2009). https://doi.org/10.1021/ac901714h
- Hossain, S.M.Z. et al. Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal. Chem. 81, 5474-5483 (2009). https://doi.org/10.1021/ac900660p
- Badawy, M.E. & El-Aswad, A.F. Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. Int. J. Anal. Chem. http://dx.doi.org/10.1155/2014/536823 (2014).
- Jahanshahi-Anbuhi, S. et al. Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 12, 5079-5085 (2012). https://doi.org/10.1039/c2lc41005b
- Nouanthavong, S., Nacapricha, D., Henry, C.S. & Sameenoi, Y. Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst 141, 1837-1846 (2016). https://doi.org/10.1039/C5AN02403J
- Kavruk, M., Ozalp, V.C. & Oktem, H.A. Portable bioactive paper-based sensor for quantification of pesticides. J. Anal. Methods Chem. http://dx.doi.org/10.1155/2013/932946 (2013).
- Chang, J., Li, H., Hou, T. & Li, F. Paper-based fluorescent sensor for rapid naked-eye detection of acetylcholinesterase activity and organophosphorus pesticides with high sensitivity and selectivity. Biosens. Bioelectron. 86, 971-977 (2016). https://doi.org/10.1016/j.bios.2016.07.022
- Cotson, S. & Holt, S.J. IV. Kinetics of aerial oxidation of indoxyl and some of its halogen derivatives. Proc. R. Soc. Lond. B. Biol. Sci. 148, 506 (1958). https://doi.org/10.1098/rspb.1958.0042
- Pohanka, M., Hrabinova, M., Kuca, K. & Simonato, J.-P. Assessment of acetylcholinesterase activity using indoxylacetate and comparison with the standard Ellman's method. Int. J. Mol. Sci. 12, 2631-2640 (2011). https://doi.org/10.3390/ijms12042631
- Pesticides Database Search: 17 - Chlorpyrifos. www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/en/?p_id=17 (2013).
- Han, Y. et al. Effects of sugar additives on protein stability of recombinant human serum albumin during lyophilization and storage. Arch. Pharmacal Res. 30, 1124 (2007). https://doi.org/10.1007/BF02980247
Cited by
- A Paper‐Based Platform for Long‐Term Deposition of Nanoparticles with Exceptional Redispersibility, Stability, and Functionality vol.36, pp.6, 2018, https://doi.org/10.1002/ppsc.201800483
- Classification, extraction and current analytical approaches for detection of pesticides in various food products vol.14, pp.3, 2019, https://doi.org/10.1007/s00003-019-01242-4
- Three-Dimensional Paper-Based Microfluidic Analytical Devices Integrated with a Plasma Separation Membrane for the Detection of Biomarkers in Whole Blood vol.11, pp.40, 2018, https://doi.org/10.1021/acsami.9b13644
- Fabrication of CsPbBr3 Perovskite Quantum Dots/Cellulose-Based Colorimetric Sensor: Dual-Responsive On-Site Detection of Chloride and Iodide Ions vol.59, pp.2, 2018, https://doi.org/10.1021/acs.iecr.9b05946
- Advances in Paper-Based Analytical Devices vol.13, pp.1, 2018, https://doi.org/10.1146/annurev-anchem-061318-114845
- Pump-Free Microfluidic Rapid Mixer Combined with a Paper-Based Channel vol.5, pp.7, 2018, https://doi.org/10.1021/acssensors.0c00937
- A Microfluidic Paper-Based Analytical Device for Type-II Pyrethroid Targets in an Environmental Water Sample vol.20, pp.15, 2020, https://doi.org/10.3390/s20154107
- Development of a novel three-dimensional microfluidic paper-based analytical device (3D-μPAD) for chlorpyrifos detection using graphene quantum-dot capped gold nanocomposite for colorimetric assay vol.100, pp.10, 2018, https://doi.org/10.1080/03067319.2019.1650921
- Enzymatic assays for the assessment of toxic effects of halogenated organic contaminants in water and food. A review vol.145, pp.None, 2018, https://doi.org/10.1016/j.fct.2020.111677
- Cellulose: A Contribution for the Zero e‐Waste Challenge vol.6, pp.7, 2021, https://doi.org/10.1002/admt.202000994
- Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review vol.11, pp.9, 2021, https://doi.org/10.3390/bios11090316
- Recent advances and perspectives of enzyme-based optical biosensing for organophosphorus pesticides detection vol.240, pp.None, 2022, https://doi.org/10.1016/j.talanta.2021.123145