Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07024

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment  

Abo-Amer, Aly E. (Division of Microbiology, Department of Biology, Faculty of Science, University of Taif)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.1, 2011 , pp. 71-80 More about this Journal
Abstract
Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.
Keywords
Biodegradation; diazinon; Serratia marcescens; biotic and environmental factors;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Miethling, R. and U. Karlson. 1996. Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP I and Sphingomonas chlorophenolica RA 2. Appl. Environ. Microbiol. 62: 4361-4366.
2 Mulchandani, A., I. Kaneva, and W. Chen. 1999. Detoxification of organophosphate pesticides by immobilized Escherichia coli expressing organophosphorus hydrolase on cell surface. Biotechnol. Bioeng. 63: 216-223.   DOI   ScienceOn
3 Munnecke, D. M. and D. P. M. Hsieh. 1976. Pathways of microbial metabolism of parathion. Appl. Environ. Microbiol. 3: 63-69.
4 Ohshiro, K., T. Kakuta, T. Sakai, H. Hirota, T. Hoshino, and T. Uchiyama. 1996. Biodegradation of organophosphorus insecticides by bacteria isolated from turf green soil. J. Ferment. Bioeng. 82: 299-305.   DOI   ScienceOn
5 Ortiz-Hernandez, M. L. and E. Sanchez-Salinas. 2010. Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev. Int. Contam. Ambient 26: 27-38.
6 Qiu, X. H., W. Q. Bai, Q. Z. Zhong, M. Li, F. Q. He, and B. T. Li. 2006. Isolation and characterization of a bacterial strain of the genus Achrobactrum with methyl parathion mineralizing activity. J. Appl. Microbiol. 101: 986-994.   DOI   ScienceOn
7 Ramadan, M. A., O. M. El-Tayeb, and M. Alexander.1990. Inoculum size as a factor limiting success of inoculation for biodegradation. Appl. Environ. Microbiol. 56: 1392-1396.
8 Ramanathan, M. P. and D. Lalithakumari. 1999. Complete mineralization of methylparathion by Pseudomonas sp. A3. Appl. Biochem. Biotechnol. 80: 1-12.   DOI   ScienceOn
9 Karpouzas, D. G. and A. Walker. 2000. Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil. Soil Biol. Biochem. 32: 1753-1762.   DOI   ScienceOn
10 Karpouzas, D. G., A. Fotopoulou, U. Menkissoglu-Spiroudi, and B. K. Singh. 2005. Nonspecific biodegradation of the organophosphorus pesticides, cadusafos and ethoprophos, by two bacterial isolates. FEMS Microbiol. Ecol. 53: 369-378.   DOI   ScienceOn
11 Karpouzas, D. G. and B. K. Singh. 2006. Microbial degradation of organophosphorus xenobiotics: Metabolic pathways and molecular basis. Adv. Microb. Physiol. 51: 119-185.
12 Kertesz, M. A., A. M. Cook, and T. Leisinger. 1994. Microbial metabolism of sulfur and phosphorus-containing xenobiotics. FEMS Microbiol. Rev. 15: 195-215.   DOI   ScienceOn
13 Lakshmi, C. V., M. Kumar, and S. Khanna. 2008. Biotransformation of chlorpyrifos and bioremediation of contaminated soil. Int. Biodeter. Biodegr. 62: 204-209.   DOI   ScienceOn
14 Grimsley, J., V. Rastogi, and J. Wild. 1998. Biological detoxification of organophosphorus neurotoxins, pp. 557-613. In S. Sikdar and R. Irvine (eds.). Bioremediation: Principles and Practice - Biodegradation Technology Developments, Vol. 2. Technomic Pub., New York.
15 Li, M. T., L. L. Hao, L. X. Sheng, and J. B. Xu. 2008. Identification and degradation characterization of hexachlorobutadiene degrading strain Serratia marcescens HL1. Bioresource Technol. 99: 6878-6884.   DOI   ScienceOn
16 Liu, F., M. Hong, D. Liu, and Y. Li. 2007. Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J. Environ. Sci. 19: 1257-1260.   DOI   ScienceOn
17 Ghassempour, A., A. Mohammadkhah, F. Najafi, and M. Rajabzadeh. 2002. Monitoring of the pesticide diazinon in soil, stem and surface water of rice fields. Anal. Sci. 18: 779-783.   DOI   ScienceOn
18 Hayatsu, M., M. Hirano, and S. Tokuda. 2000. Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl. Environ. Microbiol. 66: 1737-1740   DOI   ScienceOn
19 Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Stanley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, Ninth Ed. Williams and Wilkins Co., Baltimore.
20 Hong, Q., Z. Zhang, Y. Hong, and S. Li. 2007. A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int. Biodeter. Biodegrad. 59: 55-61.   DOI   ScienceOn
21 Horne, I., T. D Sutherland, R. L. Harcourt, R. J. Russell, and J. G. Oakeshott. 2002. Identification of an opd (organophosphate degradation) gene in an Agrobacterium isolate. Appl. Environ. Microbiol. 68: 3371-3376.   DOI   ScienceOn
22 Jiang, J., R. Zhang, R. Li, J. Gu, and S. Li. 2007. Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 18: 403-412.   DOI   ScienceOn
23 Bakry, N. M., A. H. El-Rashidy, A. T. Eldefrawi, and M. E. Eldefrawi. 2006. Direct actions of organophosphate anticholinesterases on nicotinic and muscarinic acetylcholinic receptors. J. Biochem. Toxicol. 3: 235-259.
24 Bavcon, M., P. Trebse, and L. Zupancic-Kralj. 2003. Investigations of the determination and transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionization detector. Chemosphere 50: 595-601.   DOI   ScienceOn
25 Cabrera, J. A., A. Kurtz, R. A. Sikora, and A. Schouten. 2010. Isolation and characterization of fenamiphos degrading bacteria. Biodegradation, 21: 1017-1027.   DOI   ScienceOn
26 Comeau, Y., C. W. Greer, and R. Samson. 1993. Role of inoculum preparation and density on the bioremediation of 2,4-D contaminated soil by bioagumentation. Appl. Microbiol. Technol. 38: 681-687.
27 Gevao, B., K. T. Semple, and K. C. Jones. 2000. Bound pesticide residues in soil: A review. Environ. Pollut. 108: 3-14.   DOI   ScienceOn
28 Cui, Zhongli, Shunpeng Li, and Guoping Fu. 2001. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl. Environ. Microbiol. 67: 4922-4925.   DOI   ScienceOn
29 Cycon, M., M. Wojcik, and Z. Piotrowska-Seget. 2009. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudomonas sp. and their use in bioremediation of contaminated soil. Chemosphere 76: 494-501.   DOI   ScienceOn
30 Duquenne, P., N. R. Parekh, G. Gatroux, and J.-C. Fournier. 1996. Effect of inoculant density, formulation, dispersion and soil nutrient amendment on the removal of carbofuran residues from contaminated soils. Soil Biol. Biochem. 28: 1805-1811.   DOI   ScienceOn
31 Extension Toxicology Network. 1996. EXTOXNET Pesticide Information Profiles: Diazinon. Accessed June 15, 2000, at http://ace.orst.edu/cgi-bin/mfs/01/pips/diazinon. htm?8#mfs.
32 Singh, B. K., A. Walker, A. W. Morgan, J. Denis, and D. J. Wright. 2004. Biodegradation of chlorpyrifos by Enterobacter strain b-14 and its use in bioremediation of contaminated soils. Appl. Environ. Microbiol. 70: 4855-4863.   DOI   ScienceOn
33 Agricultural Research Service. 1995. U.S. Department of Agriculture, Agricultural Research Service Pesticide Properties: Diazinon. Accessed July 28, 2000, at http://www.arsusda.gov/rsml/textfiles/DIAZINON.
34 Rani, M. S., K. V. Lakshmi, P. S. Devi, R. J. Madhuri, S. Aruna, K. Jyothi, G. Narasimha, and K. Venkateswarlu. 2008. Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr. J. Microbiol. Res. 2: 26-31.
35 Richins, D., I. Kaneva, A. Mulchandani, and W. Chen. 1997. Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984-987.   DOI   ScienceOn
36 Rosenberg, A. and M. Alexander. 1979. Microbial cleavage of various organophosphorus insecticides. Appl. Environ. Microbiol. 37: 886-891.
37 Rousseaux, S., A. Hartmann, B. Lagacherie, S. Piutti, F. Andreux, and G. Soulas. 2003. Inoculation of an atrazinedegrading strain, Chelatobacter heintzii Cit 1, in four different soils: Effects of different inoculum densities. Chemosphere 51: 569-576.   DOI   ScienceOn
38 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, Third Ed. Cold Spring Harbor Laboratory Press, pp. 611-618.
39 Sethunathan, N. N. and T. Yoshida. 1973. A Flavobacterium that degrades diazinon and parathion. Can. J. Microbiol. 19: 873-875.   DOI   ScienceOn
40 Singh, B. K., A. Walker, J. Denis, and D. J. Wright. 2006. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions. Soil Biol. Biochem. 38: 2682-2693.   DOI   ScienceOn
41 Sorensen, S. R., C. N. Albers, and J. Aamand. 2008. Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl. Environ. Microbiol. 74: 2332-2340.   DOI   ScienceOn
42 Surekha, R. M., P. K. L. Lakshmi, D. Suvarnalatha, M. Jaya, S. Aruna, K. Jyothi, G. Narasimha, and K. Venkateswarlu. 2008. Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr. J. Microbiol. Res. 2: 026-031.
43 Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sunderland: Sinauer.
44 Yasouri, F. N. 2006. Plasmid mediated degradation of diazinon by three bacterial strains, Pseudomonas sp., Flavobacterium sp. and Agrobacterium sp. Asian J. Chem. 18: 2437-2444.