• Title/Summary/Keyword: Chloride attack

Search Result 318, Processing Time 0.026 seconds

Comparison of High-Durability Materials for Prevention of Corrosion in Marine Concrete Structures (해양콘크리트구조물의 부식 방지를 위한 고내구성 재료의 성능비교)

  • Lee, Dong-Gun;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae;Han, Sang-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.581-584
    • /
    • 2006
  • The durability of reinforced concrete structures is severely degraded by mainly corrosion due to seawater attack and chloride ion diffusion in concrete. The deterioration of durability causes high repair cost for maintenance of marine concrete structure. In this paper, high-durability materials for prevention of rebar corrosion are investigated to promote the durability in marine concrete structures. For these, the effect of the mineral materials addition(SF, FA and BFS), the modified steel(stainless and coating steel). and corrosion inhibitors are compared.

  • PDF

Non-destructive Inspection Methods for Componential Analysis of Concrete (콘코리트 성분분석을 위한 비파괴분석방법)

  • Kanada, Hisashi;Ahn, Tae-Ho;Uomoto, Taketo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.933-936
    • /
    • 2006
  • Many non-destructive inspection methods have recently been developed for concrete structures. However, these methods can obtain only physical information of concrete, such as crack depth, delamination or position of reinforcement etc. near its surface. If chemical information is required, sampling and componential analyses may be earned out. Non-destructive method that can detect deterioration factors such as carbonation, chloride content or sulfate attack would be an outstanding innovation in inspection methodologies. In this research, near-infrared spectroscopy and X-ray fluorescence analysis were applied for componential analysis for concrete. These methods are very effective compared to traditional methods, therefore, working efficiency and maintenance cost will be improved.

  • PDF

A Study on Minimizing for Hydration Heat Cracks of a Subway Concrete Box Structure (콘크리트 BOX 구조물의 수화열에 의한 온도균열제어 대책)

  • Kim, Eun-Kyum;Jeon, Chan-Ki;Jeon, Joong-Kyu;Bae, Sang-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.705-708
    • /
    • 2006
  • The bigger of concrete structures by a construct technique improvement, and the increase of the cement quantity which is caused by with use of the high-strength concrete for the load-carrying-capacity and a durability cause temperature cracks by a heat of hydration. The temperature crack due to the heat of hydration classified a nonstructural crack. but it has a bad effect on durability of concrete structures. especially, in case of a subway concrete box structure, when a water-proof facilities is beaked on an outer-wall, the water leakage occurs through a penetration crack generated from a wall of the concrete structure too. This paper, for the subway concrete box structure, which is located in chloride attack region, the use of blended cement, the temperature of air and concrete, was considered and analysed by a three dimensional finite element method.

  • PDF

Evaluation of Performance on Repair Materials for Creek Concrete Structures (콘크리트 복개구조물용 보수재료의 성능 평가)

  • Lee, Chang-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.205-212
    • /
    • 2002
  • The deterioration rate of concrete structures in urban area is accelerated due to rapid urbanization and environmental pollution. Repair materials and methods newly introduced in Korea should be investigated whether they are appropriate for the urban environment in Korea. The creek concrete structures are exposed in severe environmental condition than others. Based on these background in mind, the study is focused on evaluation of performance on repair materials used to rehabilitate creek concrete structures. To evaluate the performance of repair materials, four kinds of repair materials were selected based on polymer emulsion. This experimental study was conducted on fundamental performance such as setting time, compressive strength, bending strength, bonding strength, thermal expansion coefficient, and durability performance such as chloride diffusion, carbonation, chemical attack, and steel corrosion rate. On the basis of this study, the optimal repair material which is proper to the environment condition can be selected and service life of creek concrete structures can be extended. As a result, the life cycle cost can be reduced and the waste of material resources will be cut down.

Degradation mechanisms of concrete subjected to combined environmental and mechanical actions: a review and perspective

  • Ye, Hailong;Jin, Nanguo
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.107-119
    • /
    • 2019
  • In-service reinforced concrete structures are simultaneously subjected to a combination of multi-deterioration environmental actions and mechanical loads. The combination of two or more deteriorative actions in environments can potentially accelerate the degradation and aging of concrete materials and structures. This paper reviews the coupling and synergistic mechanisms among various deteriorative driving forces (e.g. chloride salts- and carbonation-induced reinforcement corrosion, cyclic freeze-thaw action, alkali-silica reaction, and sulfate attack). In addition, the effects of mechanical loads on detrimental environmental factors are discussed, focusing on the transport properties and damage evolution in concrete. Recommendations for advancing current testing methods and predictive modeling on assessing the long-term durability of concrete with consideration of the coupling effects are provided.

Analysis of Chloride Ion Penetration Properties into Concrete on Road Facilities Depending on the Deterioration Environments (국도 상 도로시설물 대상 열화환경 조건 별 콘크리트 염화물 침투 특성 분석)

  • Min, Jiyoung;Lee, Jong-Suk;Lee, Tack-gon;Cha, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.102-113
    • /
    • 2021
  • The deterioration environments caused by de-icing salt and airborne chlorides in the seashore, evaluated in the "Detailed guideline for safety and management practice of facilities (performance evaluation)", were reviewed in terms of penetrated chlorides into concrete on various road facilities. Target concrete structures, in this study, were 4 concrete barriers in Gangwon area, 3 concrete barriers and 1 retaining wall in Busan area, and 4 bridges in Gangwon-do, Seoul, Gyeonggi-do, and Busan. The deterioration environments were classified into three categories: direct and indirect de-icing salt attack, and airborne salt attack depending on the distance to seashore and the height of pier, and the penetrated chlorides in to concrete were analyzed. The results showed that (1) the regional deterioration environments were clearly classified by de-icing salt sprayed days (snowfall days), (2) the penetrated chlorides increased significantly when leakage occurred through slabs or expansion joints, and (3) the airborne chlorides affected to a height of 20 m concrete in the seashore, Busan. From these, it could be confirmed that the chloride ion penetration properties depend on the exposed aging environment, member location and height, and deterioration status, even on the same structure, so the selection of target members and location is very important in the inspection and maintenance. If the database of penetrated chlorides properties in various deterioration environments is constructed, it is expected that the proactive durability management on concrete structures will be possible in the field.

A Study on the Methodology to Ensure Long-Term Durability of Low and Intermediate Level Radwaste Disposal Concrete Structure (${\cdot}$저준위 방사성폐기물 처분 콘크리트 구조물의 장기적 내구성 확보를 위한 방안 검토)

  • Kim Young-Ki;Lee Byung-Sik;Lee Yong-Ho
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.211-220
    • /
    • 2005
  • The concrete structure is being considered for the main engineered barrier of low and intermediate level radwaste disposal facility. Concrete of low permeability can minimize infiltration of water and effectively prevent release of nuclide to ecosystem. But if concrete degrades, structural stability of disposal structure will decrease while permeability increase, resulting in increased possibility of nuclide release due to water infiltration. Therefore disposal concrete structure degradation shall be minimized to maintain capacity of nuclide isolation. The typical causes of concrete structure degradation are sulfide attack, reinforcement corrosion due to chloride attack, leaching of calcium hydroxide, alkali-aggregate reaction and repeated freezing-thawing. The common cause of these degradation processes is infiltration of water or adverse chemicals into concrete. Based on the study of these degradation characteristics and mechanisms of concrete structure, the methodology of design and service life evaluation of concrete structure as an engineered barrier are reviewed to ensure its long-term durability.

  • PDF

Durability Performance Evaluation On Early-Aged Concrete with Rice Husk Ash and Silica Fume (Rice Husk Ash와 실리카퓸을 혼입한 초기재령 콘크리트의 내구성능 평가)

  • Saraswathy, Velu;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.343-351
    • /
    • 2015
  • Currently, lots of researches have been performed for reducing cement usages due to increasing social/engineering problems caused by $CO_2$ emission. Supplementary cement materials like fly ash, slag, and silca fume are usually employed for cement replacement, and nowadays rice husk ash (RHA) is widely studied for enhancement of concrete performance as mineral admixture. In this paper, concrete samples with RHA and SF which is known for its engineering advantages are prepared and a resistance to chloride attack is evaluated in early-aged concrete. For the work, replacement ratios of 10~30% for RHA concrete and 2~8% for SF concrete are considered, and various durability tests such as density, void, sorptivity, current measurement, and chloride diffusion coefficient are performed including mechanical test like compressive and tensile strength. Replacement of RHA 10~15% shows better improvement of corrosion resistance and strength than that of SF 2~4% and normal concrete, which shows a strong applicability for utilization as construction materials.

Durability Properties of High Volume Blast Furnace Slag Concrete for Application in Nuclear Power Plants (고로슬래그 다량치환 콘크리트의 원전 콘크리트 적용을 위한 내구성능 평가)

  • Seo, Eun-A;Lee, Jang-Hwa;Lee, Ho-Jea;Kim, Do-Gyeum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.45-52
    • /
    • 2017
  • This study evaluated the durability of nuclear power plant concrete. The main parameters were the water-to-binder ratio and admixture type. The results revealed that high-volume ground granulated blast-furnace slag(GGBS) concrete had lower initial strength, while the strength reached higher after 28 days. On the other hand, the initial strength of fly ash blended concrete was high, but the long-term strength of the robbery was low. The measured durability of GGBS blended concrete was found to be better than that of the existing concrete mix for use in the construction of nuclear power plants. Especially, the GGBS blended concrete was more durable than the fly ash blended concrete in terms of chloride attack, carbonation resistivity and freezing-thawing durability in low compressive strength. The effects of concrete compressive strength according to gamma rays were minor.

Evaluation of Engineering Properties in Early-Age Concrete with TDFA (TDFA를 혼입한 초기재령 콘크리트의 공학적 특성 평가)

  • Park, Jae-Sung;Park, Sang-Min;Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • This paper presents an evaluation of engineering properties in TDFA(Tire Derived Fuel Ash)- based concrete in early age. Concrete containing 0.5 of w/b(water to binder) ratio and 20% of FA(Fly Ash) replacement ratio are prepared, and FA content are replaced with TDFA from 3% to 12% for evaluating the effect of TDFA on fresh and hardened concrete properties. With higher than 6% of TDFA replacement ratio, workability is significantly worsened but it is improved with more SP(Super plasticizer) and AE(Air Entrainer) agent. Concrete with 6~12% of TDFA shows reasonable strength development and better resistance to carbonation and chloride attack in spite of early-aged condition. However concrete with 6% TDFA shows poor resistance to freezing and thawing action due to insufficient air content. If air content and workability are obtained, replacement of TDFA to 12% can be used for concrete with FA.