• 제목/요약/키워드: ChemicalPolishing

검색결과 584건 처리시간 0.027초

강유전체막의 CMP 연마 특성 (Chemical Mechanical Polishing (CMP) Characteristics of Ferroelectric Film)

  • 서용진;박성우;김경태;김창일;장의구;김상용;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.140-143
    • /
    • 2003
  • BST thin films have a good thermal-chemical stability, insulating effect and variety of phases. However, BST thin films have problems of the aging effect and mismatch between the BST thin film and electrode. Also, due to the high defect density and surface roughness at grain boundarys and in the grains, which degrades the device performances. In order to overcome these weakness, we first applied the chemical mechanical polishing (CMP) process to the polishing of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. BST ferroelectric film was fabricated by the sol-gel method. And then, we compared the structural characteristics before and after CMP process of BST films. We expect that our results will be useful promise of global planarization for FRAM application in the near future.

  • PDF

Effects of chemical reaction on the polishing rate and surface planarity in the copper CMP

  • Kim, Do-Hyun;Bae, Sun-Hyuk;Yang, Seung-Man
    • Korea-Australia Rheology Journal
    • /
    • 제14권2호
    • /
    • pp.63-70
    • /
    • 2002
  • Chemical mechanical planarization (CMP) is the polishing process enabled by both chemical and mechanical actions. CMP is used in the fabrication process of the integrated circuits to achieve adequate planarity necessary for stringent photolithography depth of focus requirements. And recently copper is preferred in the metallization process because of its low resistivity. We have studied the effects of chemical reaction on the polishing rate and surface planarity in copper CMP by means of numerical simulation solving Navier-Stokes equation and copper diffusion equation. We have performed pore-scale simulation and integrated the results over all the pores underneath the wafer surface to calculate the macroscopic material removal rate. The mechanical abrasion effect was not included in our study and we concentrated our focus on the transport phenomena occurring in a single pore. We have observed the effects of several parameters such as concentration of chemical additives, relative velocity of the wafer, slurry film thickness or ash)tract ratio of the pore on the copper removal rate and the surface planarity. We observed that when the chemical reaction was rate-limiting step, the results of simulation matched well with the experimental data.

Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향 (Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry)

  • 송민석;지원호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF

탈이온수의 압력과 정제된 $N_2$가스가 ILD-CMP 공정에 미치는 영향 (Influence of DI Water Pressure and Purified $N_2$Gas on the Inter Level Dielectric-Chemical Mechanical Polishing Process)

  • 김상용;이우선;서용진;김창일;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제13권10호
    • /
    • pp.812-816
    • /
    • 2000
  • It is very important to understand the correlation of between inter dielectric(ILD) CMP process and various facility factors supplied to equipment to equipment system. In this paper, the correlation between the various facility factors supplied to CMP equipment system and ILD-CMP process was studied. To prevent the partial over-polishing(edge hot-spot) generated in the wafer edge area during polishing, we analyze various facilities supplied at supply system. With facility shortage of D.I water(DIW) pressure, we introduced an adding purified $N_2$(P$N_2$)gas in polishing head cleaning station for increasing a cleaning effect. DIW pressure and P$N_2$gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. We estimated two factors (DIW pressure and P$N_2$gas) for the improvement of CMP process. Especially, we obtained a uniform planarity in patterned wafer and prohibited more than 90% wafer edge over-polishing. In this study, we acknowledged that facility factors supplied to equipment system played an important role in ILD-CMP process.

  • PDF

전해연마를 적용한 미세 마이크로 니들의 표면 향상에 대한 연구 (A study on the Surface Improvement of Fine-Micro Needles Applying Electrochemical Polishing)

  • 정성택;김현정;위은찬;공정식;백승엽
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.48-52
    • /
    • 2019
  • As the consumer market in the mold, automation and aerospace industries grows, the demand for chemical machining using on electrochemical polishing increases. To enhance the surface roughness and gloss of the micro-needle, we have studied for an electrochemical polishing. Electrochemical polishing requires the chemical reaction of solution and material according to the electrolyte and electrode. In this study, sulfuric acid(30%), phosphoric acid(50%), and DI-water(20%)were used as the electrolytic solution, and the electrolytic solution temperature used $58^{\circ}C$. Electrochemical polishing was carried out in experimental conditions, and the micro-needle experiment was carried out from the basic experiment to obtain the experimental conditions. Experimental results show that as the voltage and current increase, the surface roughness improved and the gloss is improved. So, the best result for this experiment was obtained in condition 6, which improved micro-needle.

연마성능 제어를 위한 연마패드표면 해석과 개선 (Polishing Pad Analysis and Improvement to Control Performance)

  • 박재홍;키노시타마사하루;요시다 코이치;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제20권10호
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

금속 CMP 공정시 경질 다공성 패드의 적용 (Application of Hard Porous Pad in Metal CMP Process)

  • 김상용;김남훈;김인표;장의구
    • 한국전기전자재료학회논문지
    • /
    • 제16권5호
    • /
    • pp.385-389
    • /
    • 2003
  • There are four main components of the CMP process: polishing pad, slurry, elastic supporter, and pad conditioner. The polishing pad is an essential component to the reproducibility of polishing uniformity in CMP process. However, the polishing pad in recently using metal CMP raised the several points of high cost caused by the increase of cycle time and the many usage of slurry. It is necessary to develop the novel polishing pad which would lead the cost reduction by the higher pad life-cycle, minimized cycle time and lower slurry usage. The characteristics of polishing pad were studied on the effects of different sets of the Polishing pad, which can be applied to metal chemical mechanical polishing process for global planarization of multilevel interconnection structure. The main purpose of this experiment is cost reduction by the increase of pad life-time, the decrease of cycle time and the lower usage of slurry through the specific hard porous structured pad design. It is confirmed that the novel polishing pad made the slurry usage decrease to 60% as well as the pad life-time increase twice with the 25% improvement of removal rate. The polishing time could be decreased and it also helped the cycle time to diminish. It can be expected that this results will help both the process throughput and the device yield to be improved.

Multi-con와 ALPT을 활용한 TiAlN코팅층 표면연마 초경호브의 절삭특성 및 공구수명 평가 (Evaluation Tool Life and Cutting Characteristics of Carbide Hob TiAlN Coating Surface Polishing Using Aero Lap Polishing Technology and Multi-con)

  • 천종필;편영식
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.848-854
    • /
    • 2012
  • SCM420 steel cutting gear to improve the durability is quenched. When quenching, increases surface hardness, a change of the physical properties and machinability or fall. This study, using a solid carbide hobs skiving hobbing gear cutting finishing. And cutting tool solid carbide TiAlN coating hove when TiAlN coating on the surface of multi-con polishing hob conducted aero lap nano polishing for each cutting. Experimental results conducted aero lap nano coating on the surface polishing tool machinability was excellent. And aero lap nano polishing tool results were reduced 2.5 times the tool wear compared to TiAlN coated tools. Excellent results were 1.42 times longer tool life.

Technical Overview on the Electron Backscattered Diffraction Sample Preparation

  • Kim, Dong-Ik;Kim, Byung-Kyu;Kim, Ju-Heon
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.218-224
    • /
    • 2015
  • A technical overview on the various sample preparation methods for electron backscattered diffraction (EBSD) analysis is carried out. The mechanical polishing with colloidal silica finish, electro-chemical polishing, dual layer coating and ion beam milling are introduced for the common sample preparation methods for EBSD observation and some issues that are frequently neglected by the common EBSD users but should be considered to get a reliable EBSD data are discussed. This overview would be especially helpful to the people who know what EBSD technique is but do not get a reliable EBSD data because of difficulties in sample preparation.

첨탄기어의 피로강도에 미치는 표면이상층의 영향에 관한 연구 (A Study on the Effect of Non-martensitic Layer on the Fatigue Strength in Carburized Gears)

  • 류성기;박준철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권2호
    • /
    • pp.357-364
    • /
    • 2001
  • This study deals with the effect on non-martensitic layer on the fatigue strength in carburized gear. The test gears are carburized, then treated by the combination of chemical polishing and electro-polishing. Carburization treatment is used widely on parts of power transmission system like surface hardened layer to improve fatigue strength. Carburized gears are observed using a scanning electron microscope(SEM) to determine the characteristics of crack initiation mechanism in the surface layer. The constant street amplitude fatigue test is performed by using and electro-hydraulic servo-controlled pulsating tester. The S-N curves are obtained and illustrated. The effect of non-martensitic layer on the fatigue strength is clarified.

  • PDF