• 제목/요약/키워드: Chemical state

검색결과 3,657건 처리시간 0.029초

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

  • Liu, Wei;Wu, Liang;Zhang, Xiaohua;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.204-210
    • /
    • 2014
  • The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 ${\mu}M$, 0.7-440 ${\mu}M$ and 3.0-365 ${\mu}M$, respectively, and the detection limits (S/N = 3) are $0.03{\mu}M$, $0.11{\mu}M$ and $0.38{\mu}M$, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

계면 제어를 기반으로 한 고성능 전고체 전지 연구 (Review of interface engineering for high-performance all-solid-state batteries)

  • 황인수;이현정
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

카본블래랙과 탄소섬유를 포함하는 에폭시 복합체의 마이크로파 흡수 특성 (Microwave Absorbing Characteristics of Epoxy Composites Containing Carbon Black and Carbon Fibers)

  • Lv, Xiao;Yang, Shenglin;Jin, Junhong;Zhang, Liang;Li, Guang;Jiang, Jianming
    • 폴리머
    • /
    • 제33권5호
    • /
    • pp.420-428
    • /
    • 2009
  • In this study, the composites containing carbon black (CB) or carbon fibers were prepared, and the microwave absorbing properties and the absorption mechanism of them were investigated and discussed in the frequency range of 2-18 GHz, respectively. The optimum mass fraction of CB has been found as 6%, and the carbon fibers were discovered to absorb radar wave either under parallel or vertical polarization, the suitable gap distance between each bundle of which was 5 mm. According to the results of the single constitute absorber samples, the structured composites with the two kinds of absorbers combination were fabricated and studied at 2-18 GHz. The top layer absorbers affect the absorption performance a lot; the maximum reflection loss of composites with CB as top layer absorbers was -31.8 dB with the frequency range of 2.4 GHz below -10 dB, and the other type with CFs as the top layer absorbers obtained the reflection loss peak value of -31.4 dB with 2 GHz below-10 dB.

Prediction of a Strong Effect of a Wek Magnetic Field on Diffusion Assisted Reactions in Non Equilibrium Conditions

  • Kipriyanov, Alexey A. Jr.;Purtov, Peter A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.1009-1014
    • /
    • 2012
  • The influence of magnetic fields on chemical processes has long been the subject of interest to researchers. For this time numerous investigations show that commonly the effect of a magnetic field on chemical reactions is insignificant with impact less than 10 percent. However, there are some papers that point to the observation of external magnetic field effect on chemical and biochemical systems actually having a significant impact on the reactions. Thus, of great interest is an active search for rather simple but realistic models, that are based on physically explicit assumptions and able to account for a strong effect of low magnetic fields. The present work theoretically deals with two models explaining how an applied weak magnetic field might influence the steady state of a non-equilibrium chemical system. It is assumed that external magnetic field can have effect on the rates of radical reactions occurring in a system. This, in turn, leads to bifurcation of the nonequilibrium stationary state and, thus, to a drastic change in the properties of chemical systems (temperature and reagent concentration).

Reuse of Spent FCC Catalyst for Removing Trace Olefins from Aromatics

  • Pu, Xin;Luan, Jin-Ning;Shi, Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2642-2646
    • /
    • 2012
  • Pretreatment of spent FCC catalyst and its application in remove trace olefins in aromatics were investigated in this research. The most effective pretreatment route of spent FCC catalyst was calcining at $700^{\circ}C$ for 1 h, washing with 5% oxalic acid solution in ultrasonic reactor and dried. Treated spent FCC catalyst was modified with metal halides, then to prepare catalyst to remove trace olefins in aromatics. X-ray diffraction, Pyridine-FTIR, $N_2$ adsorption-desorption and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to investigate the pretreatment process. The result showed that the performance of the treated spent FCC catalyst was much greater than that of the spent FCC catalyst, which indicted the possibility and improvement of this research.

Facile Modulation of Electrical Properties on Al doped ZnO by Hydrogen Peroxide Immersion Process at Room Temperature

  • Park, Hyun-Woo;Chung, Kwun-Bum
    • Applied Science and Convergence Technology
    • /
    • 제26권3호
    • /
    • pp.43-46
    • /
    • 2017
  • Aluminum-doped ZnO (AZO) thin films were deposited by atomic layer deposition (ALD) with respect to the Al doping concentrations. In order to explain the chemical stability and electrical properties of the AZO thin films after hydrogen peroxide ($H_2O_2$) solution immersion treatment at room temperature, we investigated correlations between the electrical resistivity and the electronic structure, such as chemical bonding state, conduction band, band edge state below conduction band, and band alignment. Al-doped at ~ 10 at % showed not only a dramatic improvement of the electrical resistivity but also excellent chemical stability, both of which are strongly associated with changes of chemical bonding states and band edge states below the conduction band.