Microwave Absorbing Characteristics of Epoxy Composites Containing Carbon Black and Carbon Fibers

카본블래랙과 탄소섬유를 포함하는 에폭시 복합체의 마이크로파 흡수 특성

  • Lv, Xiao (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Yang, Shenglin (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Jin, Junhong (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Zhang, Liang (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Li, Guang (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Jiang, Jianming (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University)
  • Published : 2009.09.25

Abstract

In this study, the composites containing carbon black (CB) or carbon fibers were prepared, and the microwave absorbing properties and the absorption mechanism of them were investigated and discussed in the frequency range of 2-18 GHz, respectively. The optimum mass fraction of CB has been found as 6%, and the carbon fibers were discovered to absorb radar wave either under parallel or vertical polarization, the suitable gap distance between each bundle of which was 5 mm. According to the results of the single constitute absorber samples, the structured composites with the two kinds of absorbers combination were fabricated and studied at 2-18 GHz. The top layer absorbers affect the absorption performance a lot; the maximum reflection loss of composites with CB as top layer absorbers was -31.8 dB with the frequency range of 2.4 GHz below -10 dB, and the other type with CFs as the top layer absorbers obtained the reflection loss peak value of -31.4 dB with 2 GHz below-10 dB.

Keywords

References

  1. K. J. Vinoy and R. M. Jha, Radar absorbing materials from theory to design and characterization, Boston, 1996
  2. J. H. Oh, K. S. Oh, C. G. Kim, and C. S. Hong, Comp. B: Eng., 35, 49 (2004) https://doi.org/10.1016/j.compositesb.2003.08.011
  3. K. Park, S. E. Lee, C. G. Kim, and J. H. Han, Comp. Sci. Tech., 66, 576 (2006) https://doi.org/10.1016/j.compscitech.2005.05.034
  4. S. E. Lee, J. H. Kang, and C. G. Kim, Comp. Struct., 76, 397 (2006) https://doi.org/10.1016/j.compstruct.2005.11.036
  5. S. K. Kwon, J. M. Ahn, and G. H. Kim, Polym. Eng. Sci., 42, 2165 (2002) https://doi.org/10.1002/pen.11106
  6. P. Annadurai, A. K. Mallick, and D. K. Tripathy, J. Appl. Polym. Sci., 83, 145 (2002) https://doi.org/10.1002/app.2237
  7. D. L. Zhao, W. D. Chi, and Z. M. Shen, Eng. Mater., 334, 667 (2007)
  8. A. Saib, L. Bednarz, and R. Daussin, IEEE Tran. Micro. Theo. Tech., 54, 2745 (2006) https://doi.org/10.1109/TMTT.2006.874889
  9. Z. J. Fan, G. H Luo, Z. F. Zhang, L. Zhou, and F. Wei, Mater. Sci. Eng. B, 132, 85 (2006) https://doi.org/10.1016/j.mseb.2006.02.045
  10. Y. Sha, K. A. Jose, C. P. Neo, and V. K. Varadan, Micro. Optic. Tech. Lett., 32, 245 (2002) https://doi.org/10.1002/mop.10144
  11. G. Z. Shen, Z. Xu, and Y. Li, Fib. Rein. Plast. Comp., 3, 18 (2006)
  12. H. Zhu, J. C. Zhang, P. Chen, and X. C. Wang, J. Ind. Tex, 37, 91 (2007) https://doi.org/10.1177/1528083707078125
  13. N. Q. Zhao, T. C. Zou, C. S. Shi, J. J. Li, and W. K. Guo, Mater. Sci. Eng. B, 127, 207 (2006) https://doi.org/10.1016/j.mseb.2005.10.026
  14. H. L. Fan, W. Yang, and Z. M. Chao, Comp. Sci. Tech., 67, 3472 (2007) https://doi.org/10.1016/j.compscitech.2007.03.002
  15. T. C. Zou, C. S. Shi, and N. Q. Zhao, J. Mater. Sci., 42, 4870 (2007) https://doi.org/10.1007/s10853-006-0486-9
  16. T. C. Zou, N. Q. Zhao, C. S. Shi, J. J. Li, and W. K. Guo, J. Funct. Mater., 36, 1689 (2005)
  17. M. Z. Wu, Z. S. Zhao, and H. H. He, J. Funct. Mater., 30, 91 (1999)
  18. M. Z. Wu, H. H. He, Z. S. Zhao, and X. Yao, J. Phys. D: Appl. Phys., 33, 2927 (2000) https://doi.org/10.1088/0022-3727/33/22/309
  19. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, J. Magn. Magn. Mater., 281, 195 (2004) https://doi.org/10.1016/j.jmmm.2004.04.105
  20. K. S. Moon, H. D. Choi. A. K. Lee, K. Y. Cho, H. G. Yoon, and K. S. Suh, J. Appl. Polym. Sci., 77, 1294 (2000) https://doi.org/10.1002/1097-4628(20000808)77:6<1294::AID-APP14>3.0.CO;2-E
  21. A. Paul and S. Thomas, J. Appl. Polym. Sci., 63, 247 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970110)63:2<247::AID-APP12>3.0.CO;2-#