• 제목/요약/키워드: Chemical Warfare Agents

검색결과 37건 처리시간 0.026초

Effect of Hydrophobic Coating on Silica for Adsorption and Desorption of Chemical Warfare Agent Simulants Under Humid Condition

  • Park, Eun Ji;Cho, Youn Kyoung;Kim, Dae Han;Jeong, Myung-Geun;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.148.2-148.2
    • /
    • 2013
  • We prepared hydrophobic PDMS-coated porous silica as pre-concentration adsorbent for chemical warfare agents (CWAs). Since CWAs can be harmful to human even with a small amount, detecting low-concentration CWAs has been attracting attention in defense development. Porous silica is one of the promising candidates for CWAs pre-concentration adsorbent since it is thermally stable and its surface area is sufficiently high. A drawback of silica is that adsorption of CWAs can be significantly reduced due to competitive adsorption with water molecule in air since silica is quite hydrophilic. In order to solve this problem, hydrophobic polydimethylsiloxane (PDMS) thin film was deposited on silica. Adsorption and desorption of chemical warfare agent (CWA) simulants (Dimethylmethylphosphonate, DMMP and Dipropylene Glycol Methyl Ether, DPGEM) on bare and PDMS-coated silica were studied using temperature programed desorption (TPD) with and without co-exposing of water vapor. Without exposure of water vapor, desorbed amount of DMMP from PDMS-coated silica was twice larger than that from bare silica. When the samples were exposed to DMMP and water vapor at the same time, no DMMP was desorbed from bare silica due to competitive adsorption with water. On the other hand, desorbed DMMP was detected from PDMS-coated silica with reduced amount compared to that from the sample without water vapor exposure. Adsorption and desorption of DPGME with and without water vapor exposing was also investigated. In case of bare silica, all the adsorbed DPGME was decomposed during the heating process whereas molecular DPGME was observed on PDMS-coated silica. In summary, we showed that hydrophobic PDMS-coating can enhance the adsorption selectivity toward DMMP under humid condition and PDMS-coating also can have positive effect on molecular desorption of DPGME. Therefore we propose PDMS-coated silica could be an adequate adsorbent for CWAs pre-concentration under practical condition.

  • PDF

생체 피부조직을 이용한 피부보호제 in-vitro 시험평가 (In-vitro Tests of Topical Skin Protectants using a Flow-Through Diffusion Cell System Containing Excised Hairless Mouse Skin)

  • 이은영;최후균;김상웅;서동성;조혜은;유치호;김창환;조영
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.434-442
    • /
    • 2022
  • Highly toxic chemical warfare agents(CWA) could be used in chemical warfare and terrorism. The protection of skin is crucial for civilians and soldiers, because the primary routes of exposure to CWA are inhalation and skin absorption. Thus, topical skin protectants(TSP) have been studied and developed in many countries to complement protective equipments. In this study, in-vitro test procedure was optimized and established using a flow-through diffusion cell system containing excised hairless mouse skin in an attempt to assess the effectiveness of various TSP formulations against nerve agent simulants. In addition, the test results on the formulations including the ingredients used in SERPACWA(Skin Exposure Reduction Paste Against Chemical Warfare Agent) and IB-1(TSP of Israel) were included, indicating that the formulations with perfluorinated compounds were more effective than the glycerin-based formulations.

Breakthrough behaviour of activated charcoal cloth samples against oxygen analogue of sulphur mustard

  • Prasad, G.K.;Kumar, J. Praveen;Ramacharyulu, P.V.R.K.;Singh, Beer
    • Carbon letters
    • /
    • 제16권1호
    • /
    • pp.19-24
    • /
    • 2015
  • The breakthrough behaviour of activated charcoal cloth samples against an oxygen analogue (OA) of sulphur mustard has been studied using the modified Wheeler equation. Activated charcoal cloth samples having different surface area values in the range of 481 to $1290m^2/g$ were used for this purpose. Breakthrough behaviour was found to depend on the properties of the activated charcoal cloth, properties of the OA and the adsorption conditions. Activated charcoal cloth with a high surface area of $1290m^2/g$, relatively large surface density of $160g/m^2$ and coarser fiber structure exhibited better kinetic saturation capacity value, 0.19 g/g, against OA vapours when compared to others, thus confirming its potential use in foldable masks for protection against chemical warfare agents.

미세유체 기반의 플랫폼을 이용한 미지의 백색가루 간이식별 탐지방안 (Simple Identification Methods for Unknown Suspicious White Powders using Microfluidic-based Platform)

  • 박재우;송지영;나상철;변기식;전누리
    • 한국군사과학기술학회지
    • /
    • 제20권6호
    • /
    • pp.853-859
    • /
    • 2017
  • Terrorists always threats the global security with the possibility of using prohibited warfare, NBCs(Nuclear, Biological and Chemical Warfare). Compared to other prohibited warfares, most of biological warfare agents (BWAs) have no physical properties and time delays from spread to affect. Therefore the early detection is important to protect and decontaminate from BWAs. On the preliminary detection stage for suspicious material, most of detection kits only serve to know weather the BWAs exists or not. Due to this reason, simple field confirmation testing for suspicious substances have been used to identify materials which show negative result on detection kits. Considering the current Lab on a Chip(LOC) technologies, we suggest simple identification platform for unknown suspicious substances based on paper fluidics. We hope that our research will envision the future direction for the specific point-of-view for LOC technologies on detection strategy of BWAs.

환경샘플 내 화학작용제 및 분해물질 분석을 위한 Liquid Phase Microextraction (LPME) 전처리 기법 (Liquid-phase Microextraction Pretreatment Techniques for Analysis of Chemical Warfare Agents and Their Degradation Byproducts in Environmental Aqueous Samples)

  • 김동욱;정우영;계영식
    • 공업화학
    • /
    • 제26권1호
    • /
    • pp.17-22
    • /
    • 2015
  • 2013년 시리아 내전 간 사용되어 1,300명 이상의 사망자를 발생시킨 사린(GB) 등의 화학무기로 인해 화학무기에 대한 국제적 관심이 다시 한번 높아지게 되었다. 화학작용제는 자연환경에 노출이 되면 가수분해(hydrolysis) 또는 광분해(photodegradation) 과정을 거쳐 분해물질로 분해된다. 화학작용제 및 분해물질(가수분해 또는 산화된 생성물)은 통상수 ppb 정도의 낮은 농도로 존재하기 때문에 정확한 샘플분석을 위해서는 화학작용제 및 분해물질을 환경샘플로부터 분리, 추출, 농축시키는 전처리 과정이 필요하다. 용매추출법(LLE), 고체상 추출법(SPE) 등이 화학작용제의 전처리 방법으로 많이 사용되나 최근에는 사용되는 용매의 양은 줄이면서 분석효율은 높일 수 있는 liquid phase microextraction (LPME)이 개발 적용되고 있다. 본 리뷰에서는 화학작용제 및 그 분해물질의 전처리에 활용된 LPME 전처리 기법에 대해 살펴보고자 한다.

과황산을 이용한 2,4-D의 산화: 하이드록실아민, 킬레이트제의 영향 (Persulfate Oxidation of 2,4-D: Effect of Hydroxylamine and Chelating Agent)

  • 최지연;윤나경;신원식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권1호
    • /
    • pp.54-64
    • /
    • 2021
  • The chemical warfare agents (CWAs) have been developed for offensive or defensive purposes and used as chemical weapons in war and terrorism. The CWAs are exposed to the natural environment, transported through the water system and then eventually contaminate soil and groundwater. Therefore, effective decontamination technology to remediate CWAs are needed. The CWAs are extremely dangerous and prodution is strictly prohibited, therefore, it is difficult to use CWAs even in experimental purpose. In this study, 2,4-dichlorophenoxyacetic acid (2,4-D) was chosen as a model representative CWA because it is a simulant of anti-plant CWAs and one of the major component of agent orange. The optimum degradation conditions such as oxidant:activator ratio were determined. The effects of hydroxylamine and chelating agents such as citric acid (CA), oxalic acid (OA), malic acid (MA), and EDTA addition to increase Fe2+ activation were also investigated. Scavenger experiments using tert-butyl alcohol (TBA) and ethanol confirmed that although both sulfate (SO4•-) and hydroxyl radical (•OH) existed in Fe2+-persulfate system, sulfate radical was the predominant radical. To promote the Fe2+ activator effect, the effect of hydroxylamine as a reducing agent was investigated. In chelating agents assisted Fe2+-persulfate oxidation, the addition of 2 mM of CA and MA enhanced 2,4-D degradation. In contrast, EDTA and OA inhibited the 2,4-D removal due to steric hindrance effect.

Chemiresistive Gas Sensors for Detection of Chemical Warfare Agent Simulants

  • Lee, Jun Ho;Lee, Hyun-Sook;Kim, Wonkyung;Lee, Wooyoung
    • 센서학회지
    • /
    • 제28권3호
    • /
    • pp.139-145
    • /
    • 2019
  • Precautionary detection of chemical warfare agents (CWAs) has been an important global issue mainly owing to their toxicity. To achieve proper detection, many studies have been conducted to develop sensitive gas sensors for CWAs. In particular, metal-oxide semi-conductors (MOS) have been investigated as promising sensing materials owing to their abundance in nature and excellent sensitivity. In this review, we mainly focus on various MOS-based gas sensors that have been fabricated for the detection of two specific CWA simulants, 2-chloroethyl ethyl sulfide (2-CEES) and dimethyl methyl phosphonate (DMMP), which are simulants of sulfur mustard and sarin, respectively. In the case of 2-CEES, we mainly discuss $CdSnO_3-$ and ZnO-based sensors and their reaction mechanisms. In addition, a method to improve the selectivity of ZnO-based sensors is mentioned. Various sensors and their sensing mechanisms have been introduced for the detection of DMMP. As the reaction with DMMP may directly affect the sensing properties of MOS, this paper includes previous studies on its poisoning effect. Finally, promising sensing materials for both gases are proposed.

비접촉식 화학작용제 탐지용 라만 분광계를 위한 Denoising Autoencoder 기반 잡음제거 기술 (Denoising Autoencoder based Noise Reduction Technique for Raman Spectrometers for Standoff Detection of Chemical Warfare Agents)

  • 이창식;유형근;박재현;김휘민;박동조;장동의;남현우
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.374-381
    • /
    • 2021
  • Raman spectrometers are studied and developed for the military purposes because of their nondestructive inspection capability to capture unique spectral features induced by molecular structures of colorless and odorless chemical warfare agents(CWAs) in any phase. Raman spectrometers often suffer from random noise caused by their detector inherent noise, background signal, etc. Thus, reducing the random noise in a measured Raman spectrum can help detection algorithms to find spectral features of CWAs and effectively detect them. In this paper, we propose a denoising autoencoder for Raman spectra with a loss function for sample efficient learning using noisy dataset. We conduct experiments to compare its effect on the measured spectra and detection performance with several existing noise reduction algorithms. The experimental results show that the denoising autoencoder is the most effective noise reduction algorithm among existing noise reduction algorithms for Raman spectrum based standoff detection of CWAs.

Discrimination of Bacillus anthracis Spores by Direct in-situ Analysis of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry

  • Jeong, Young-Su;Lee, Jonghee;Kim, Seong-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2635-2639
    • /
    • 2013
  • The rapid and accurate identification of biological agents is a critical step in the case of bio-terror and biological warfare attacks. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been widely used for the identification of microorganisms. In this study, we describe a method for the rapid and accurate discrimination of Bacillus anthracis spores using MALDI-TOF MS. Our direct in-situ analysis of MALDI-TOF MS does not involve subsequent high-resolution mass analyses and sample preparation steps. This method allowed the detection of species-specific biomarkers from each Bacillus spores. Especially, B. anthracis spores had specific biomarker peaks at 2503, 3089, 3376, 6684, 6698, 6753, and 6840 m/z. Cluster and PCA analyses of the mass spectra of Bacillus spores revealed distinctively separated clusters and within-groups similarity. Therefore, we believe that this method is effective in the real-time identification of biological warfare agents such as B. anthracis as well as other microorganisms in the field.