Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2010.06a
/
pp.31-31
/
2010
The growth of the high-quality GaN epilayers is of significant technological importance because of their commercializedoptoelectronic applications as high-brightness light-emitting diodes (LEDs) and laser diodes (LDs) in the visible and ultraviolet spectral range. The GaN-based heterostructural epilayers have the polar c-axis of the hexagonal structure perpendicular to the interfaces of the active layers. The Ga and N atoms in the c-GaN are alternatively stacked along the polar [0001] crystallographic direction, which leads to spontaneous polarization. In addition, in the InGaN/GaN MQWs, the stress applied along the same axis contributes topiezoelectric polarization, and thus the total polarization is determined as the sum of spontaneous and piezoelectric polarizations. The total polarization in the c-GaN heterolayers, which can generate internal fields and spatial separation of the electron and hole wave functions and consequently a decrease of efficiency and peak shift. One of the possible solutions to eliminate these undesirable effects is to grow GaN-based epilayers in nonpolar orientations. The polarization effects in the GaN are eliminated by growing the films along the nonpolar [$11\bar{2}0$] ($\alpha$-GaN) or [$1\bar{1}00$] (m-GaN) orientation. Although the use of the nonpolar epilayers in wurtzite structure clearly removes the polarization matters, however, it induces another problem related to the formation of a high density of planar defects. The large lattice mismatch between sapphiresubstrates and GaN layers leads to a high density of defects (dislocations and stacking faults). The dominant defects observed in the GaN epilayers with wurtzite structure are one-dimensional (1D) dislocations and two-dimensional (2D) stacking faults. In particular, the 1D threading dislocations in the c-GaN are generated from the film/substrate interface due to their large lattice and thermal coefficient mismatch. However, because the c-GaN epilayers were grown along the normal direction to the basal slip planes, the generation of basal stacking faults (BSFs) is localized on the c-plane and the generated BSFs did not propagate into the surface during the growth. Thus, the primary defects in the c-GaN epilayers are 1D threading dislocations. Occasionally, the particular planar defects such as prismatic stacking faults (PSFs) and inversion domain boundaries are observed. However, since the basal slip planes in the $\alpha$-GaN are parallel to the growth direction unlike c-GaN, the BSFs with lower formation energy can be easily formed along the growth direction, where the BSFs propagate straightly into the surface. Consequently, the lattice mismatch between film and substrate in $\alpha$-GaN epilayers is mainly relaxed through the formation of BSFs. These 2D planar defects are placed along only one direction in the cross-sectional view. Thus, the nonpolar $\alpha$-GaN films have different atomic arrangements along the two orthogonal directions ($[0001]_{GaN}$ and $[\bar{1}100]_{GaN}$ axes) on the $\alpha$-plane, which are expected to induce anisotropic biaxial strain. In this study, the anisotropic strain relaxation behaviors in the nonpolar $\alpha$-GaN epilayers grown on ($1\bar{1}02$) r-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVO) were investigated, and the formation mechanism of the abnormal zigzag shape PSFs was discussed using high-resolution transmission electron microscope (HRTEM).
Applications of chitosan are related to molecular weight and degree of deacetylation(DOD) of chitosan completely. The molecular weight and DOD were greatly affected by the concentration of solution time and temperature. The degree of demineralization was not significantly different at $50^{\circ}C\;and\;70^{\circ}C$ after 30 minutes. Deproteinization decreased as process time increased. The nitrogen content was reached to 6.92% after 90 minute at $80^{\circ}C$, which is similar to theoretical nitrogen content of chitin. The DOD was 82.84% after 2 hours reaction and increased as the reaction time increased in the process. Viscosity and molecular weight are increased as recycling number of concentrated NaOH solution increased. Chemical, biological and physical properties of chitosan depend on the DOD and molecular size of the molecule. Tensile strength of the films from acetic acid solutions was between $28.9{\sim}33.6$ MPa and was generally higher than that of the films from lactic acid. Elongation of the films from lactic acid was between $97.0{\sim}109.7%$ and was generally higher than that of the films from the acetic acid. Water vapor permeability of the films prepared from lcetic acid solutions was between $1.9{\sim}2.3ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and was generally higher than that of the films from the acetic acid.
Proceedings of the Korean Vacuum Society Conference
/
2011.08a
/
pp.134-135
/
2011
양자점은 전자와 양공을 3차원으로 속박 시키므로 기존의 bulk나 양자우물보다 양자점을 이용한 레이저 다이오드의 경우 낮은 문턱 전류, 높은 미분이득 및 온도 안전성의 장점이 있을 거라 기대되고 있다. 그러나, 양자점은 낮은 areal coverage 때문에 높은 속박효율을 얻지 못하고 있다. 이러한 양자점의 문제점을 해결하기 위해 양자점을 양자우물 안에 성장시켜 운반자들의 포획을 향상시키는 방법들이 연구되고 있다. 양자우물 안에 양자점을 넣으면 양자우물이 운반자들의 포획을 증가 시키고, 열적 방출도 억제하여 온도 안정성이 향상 되는 것으로 알려져 있다. 광통신 대역의 1.3 ${\mu}m$ 경우, GaAs계를 이용하여 InAs 양자점을 strained InGaAs 박막을 우물층으로 한 dot-in-a-well 구조의 연구는 몇몇 보고된 바 있다. 그러나 InP계를 사용하는 1.55 ${\mu}m$ 대역에서 dot-in-a-well구조의 연구는 아직 미미하다. 본 연구에서는 유기 금속 화학 증착법(metal organic chemical vapor deposition)을 이용하여 InP 기판 위에 InAs 양자점을 자발성장법으로 성장하였으며 dot-in-a-well 구조에서 우물층으로 1.35 ${\mu}m$ 파장의 $In_{0.69}Ga_{0.31}As_{0.67}P_{0.33}$ (1.35Q)를, 장벽층으로는 1.1 ${\mu}m$ 파장의 $In_{0.85}Ga_{0.15}As_{0.32}P_{0.68}$(1.1Q)를 사용하였다. 양자우물층과 장벽층은 모두 InP 기판과 격자가 일치하는 조건으로 성장하였다. III족 원료로는 trimethylindium (TMI)와 trimethylgalium (TMGa)을 사용하였으며 V족 원료 가스로는 $PH_3$ 100%, $AsH_3$ 100%를, carrier gas로는 $H_2$를 사용하였다. InP buffer층의 성장 온도는 640$^{\circ}C$이며 양자점 성장 온도는 520$^{\circ}C$이다. 양자점 형성은 원자력간 현미경(Atomic force microscopy)를 이용하여 확인하였으며, 박막의 결정성은 쌍결정 회절분석(Double crystal x-ray deffractometry)를 이용하여 확인하였다. 확인된 성장 조건을 이용하여 양자점 시료를 성장하였으며 광여기분광법(Photoluminescence)을 이용하여 광특성을 분석하였다. Fig. 1은 dot in a barrier 와 dot-in-a-well 시료의 성장구조이다. Fig. 1(a)는 일반적인 dot-in-a-barrier 구조로 InP buffer층을 성장하고 1.1Q를 100 nm 성장한 후 양자점을 성장하였다. 그 후 1.1Q 100 nm와 InP 100 nm로 capping하였다. Fig. 1(b)는 dot-in-a-well 구조로 InP buffer층을 성장하고 1.1Q를 100 nm 성장 후 1.35Q 우물층을 4 nm 성장하였다. 그 위에 InAs 양자점을 성장하였다. 그 후에 1.35Q 우물층을 4 nm 성장하고 1.1Q 100 nm와 InP 100 nm로 capping하였다. Fig. 2는 dot-in-a-barrier 시료와 dot-in-a-well 시료의 상온 PL data이다. Dot-in-a-barrier 시료의 PL 파장은 1544 nm이며 반치폭은 79.70 meV이다. Dot-in-a-well 시료의 파장은 1546 nm이며 반치폭은 70.80 meV이다. 두 시료의 PL 파장 변화는 없으며, 반치폭은 dot-in-a-well 시료가 8.9 meV 감소하였다. Dot-in-a-well 시료의 PL peak 강도는 57% 증가하였으며 적분강도(integration intensity)는 45%가 증가하였다. PL 데이터에서 높은 에너지의 반치폭 변화는 없으며 낮은 에너지의 반치폭은 8 meV 감소하였다. 적분강도 증가에서 dot-in-a-well 구조가 dot-in-a-barrier 구조보다 전자-양공의 재결합이 증가한다는 것을 알 수 있으며, 반치폭 변화로부터 특히 높은 에너지를 갖는 작은 양자점에서의 재결합이 증가 된 것을 알 수 있다. 이는 양자우물이 장벽보다 전자-양공의 구속력을 증가시키기 때문에 양자점에 전자와 양공의 공급을 증가시키기 때문이다. 따라서 낮은 에너지를 가지는 양자점을 모두 채우고 높은 에너지를 가지는 양자점까지 채우게 되므로, 높은 에너지를 가지는 양자점에서의 전자-양공 재결합이 증가되었기 때문이다. 뿐만 아니라 파장 변화 없이 PL peak 강도와 적분강도가 증가하고 낮은 에너지 쪽의 반치폭이 감소한 것으로부터 에너지가 낮은 양자점보다는 에너지가 높은 양자점에서의 전자-양공 재결합율이 급증하였음을 알 수 있다. 우리는 이와 같은 연구에서 InP계를 이용해 1.55 ${\mu}m$에서도 dot in a well구조를 성장 하여 더 좋은 특성을 낼 수 있으며 앞으로 많은 연구가 필요할 것이라 생각한다.
Lee, Eun Kyung;Cho, Kanghee;Kim, Sang Kyum;Lim, Jong Sung;Kim, Jong-Nam
Clean Technology
/
v.24
no.1
/
pp.55-62
/
2018
The adsorbent used in water-adsorption cooling system utilizing low-temperature heat of below $90^{\circ}C$ is required to exhibit high water uptake capacity at a relative humidity ($P/P_0$) between 0.1 and 0.3. Mesoporous silica (MCM-41) and MOF(MIL-101) exhibit quite large water adsorption capacity under saturated water vapor at $35^{\circ}C$. However, these adsorbents show small water adsorption capacity ($0.027{g_{water}\;g_{ads}}^{-1}$, $0.074{g_{water}\;g_{ads}}^{-1}$, respectively) in the relative humidity ($P/P_0$) range of 0.1 to 0.3. In this study, the surface properties of mesoporous silica and MOF were modified by simple methods to develop an adsorbent having a higher water uptake than the conventional water adsorbents at a relative humidity ($P/P_0$) of 0.1 ~ 0.3. In the case of mesoporous silica (MCM-41) exhibiting mainly water adsorption at $P/P_0=0.5{\sim}0.7$, aluminum species was functionalized on the mesopore walls and then cations existing near the aluminum were exchanged with various cations (e.g., $Na^+$, ${NH_4}^+$, and $(C_2H_5)_4N^+$). In addition, 20 wt% (to total weight of the composites) of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MCM-41. In the case of the MIL-101 (MOF), 20 wt% of hygroscopic inorganic salt ($CaCl_2$) was impregnated on the MIL-101. The MCM-41 which was ion-exchanged with various cations has main adsorption branch around 0.5 of $P/P_0$ which was slightly shifted with low-pressure direction in comparison with pristine MCM-41. However, tiny increases were observed on the adsorption in the range of $P/P_0$ between 0.1 and 0.3. After salt impregnation on the MCM-41, the adsorption capacity under $P/P_0=0.1{\sim}0.3$ at $35^{\circ}C$ was increased from $0.027{g_{water}\;g_{ads}}^{-1}$ to $0.152{g_{water}\;g_{ads}}^{-1}$. In the case of MIL-101, the amount of water adsorption at $35^{\circ}C$ under $P/P_0=0.1{\sim}0.3$ was increased from $0.074{g_{water}\;g_{ads}}^{-1}$ to $0.330{g_{water}\;g_{ads}}^{-1}$ after the salt impregnation.
Kim, Joung-Ryul;Park, Jong-Sung;Choi, Young-Youn;Song, Oh-Sung
Journal of the Korean Vacuum Society
/
v.17
no.6
/
pp.528-537
/
2008
60 nm and 20 nm thick hydrogenated amorphous silicon(a-Si:H) layers were deposited on 200 nm $SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by an e-beam evaporator. Finally, 30 nm-Ni/(60 nm and 20 nm) a-Si:H/200 nm-$SiO_2$/single-Si structures were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 40 sec. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide from the 60 nm a-Si:H substrate showed low sheet resistance from $400^{\circ}C$ which is compatible for low temperature processing. The nickel silicide from 20 nm a-Si:H substrate showed low resistance from $300^{\circ}C$. Through HRXRD analysis, the phase transformation occurred with silicidation temperature without a-Si:H layer thickness dependence. With the result of FE-SEM and TEM, the nickel silicides from 60 nm a-Si:H substrate showed the microstructure of 60 nm-thick silicide layers with the residual silicon regime, while the ones from 20 nm a-Si:H formed 20 nm-thick uniform silicide layers. In case of SPM, the RMS value of nickel silicide layers increased as the silicidation temperature increased. Especially, the nickel silicide from 20 nm a-Si:H substrate showed the lowest RMS value of 0.75 at $300^{\circ}C$.
The nanomechanical properties of fully lithiated and unlithiated silicon nanowire deposited on silicon substrate have been studied with atomic force microscopy. Silicon nanowires were synthesized using the vapor-liquid-solid process on stainless steel substrates using Au catalyst. Fully lithiated silicon nanowires were obtained by using the electrochemical method, followed by drop-casting on the silicon substrate. The roughness, derived from a line profile of the surface measured in contact mode atomic force microscopy, has a smaller value ($0.65{\pm}0.05$ nm) for lithiated silicon nanowire and a higher value ($1.72{\pm}0.16$ nm) for unlithiated silicon nanowire. Force spectroscopy was utilitzed to study the influence of lithiation on the tip-surface adhesion force. Lithiated silicon nanowire revealed a smaller value (~15 nN) than that of the Si nanowire substrate (~60 nN) by a factor of two, while the adhesion force of the silicon nanowire is similar to that of the silicon substrate. The elastic local spring constants obtained from the force-distance curve, also shows that the unlithiated silicon nanowire has a relatively smaller value (16.98 N/m) than lithiated silicon nanowire (66.30 N/m) due to the elastically soft amorphous structures. The frictional forces of lithiated and unlithiated silicon nanowire were obtained within the range of 0.5-4.0 Hz and 0.01-200 nN for velocity and load dependency, respectively. We explain the trend of adhesion and modulus in light of the materials properties of silicon and lithiated silicon. The results suggest a useful method for chemical identification of the lithiated region during the charging and discharging process.
Ti(C,N) films are synthesized by pulsed DC plasma enhanced chemical vapor deposition (PEMOCVD) using metal-organic compounds of tetrakis diethylamide titanium at $200-300^{\circ}C$. To compare plasma parameter, in this study, $H_2$ and $He/H_2$ gases are used as carrier gas. The effect of $N_2\;and\;NH_3$ gases as reactive gas is also evaluated in reduction of C content of the films. Radical formation and ionization behaviors in plasma are analyzed in-situ by optical emission spectroscopy (OES) at various pulsed bias voltages and gas species. He and $H_2$ mixture is very effective in enhancing ionization of radicals, especially for the $N_2$. Ammonia $(NH_3)$ gas also highly reduces the formation of CN radical, thereby decreasing C content of Ti(C, N) films in a great deal. The microhardness of film is obtained to be $1,250\;Hk_{0.01}\;to\;1,760\;Hk_{0.01}$ depending on gas species and bias voltage. Higher hardness can be obtained under the conditions of $H_2\;and\;N_2$ gases as well as bias voltage of 600 V. Hf(C, N) films were also obtained by pulsed DC PEMOCYB from tetrakis diethyl-amide hafnium and $N_2/He-H_2$ mixture. The depositions were carried out at temperature of below $300^{\circ}C$, total chamber pressure of 1 Torr and varying the deposition parameters. Influences of the nitrogen contents in the plasma decreased the growth rate and attributed to amorphous components, to the high carbon content of the film. In XRD analysis the domain lattice plain was (111) direction and the maximum microhardness was observed to be $2,460\;Hk_{0.025}$ for a Hf(C,N) film grown under -600 V and 0.1 flow rate of nitrogen. The optical emission spectra measured during PEMOCVD processes of Hf(C, N) film growth were also discussed. $N_2,\;N_2^+$, H, He, CH, CN radicals and metal species(Hf) were detected and CH, CN radicals that make an important role of total PEMOCVD process increased carbon content.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.