• 제목/요약/키워드: Chemical Sensor

검색결과 1,029건 처리시간 0.026초

Langmuir-Blodgett 초박막의 gas 센서 특성 (Characteristics of Gas Sensor in Langmuir-Blodgett Ultrathin Films)

  • 최용성;김철홍;장상목;권영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 추계학술대회 논문집
    • /
    • pp.55-58
    • /
    • 1992
  • It was attempted to investigate the reaction of LB biological membrane in the gas surrounding by the use of LB method. The performance of the experiment was based on the idea that the adhesion of gas molecular on the surface of LB membrane, which induces the change of electrical properties, may make it possible to develop various sensor system modified from the sensor organs. The experimental results showed that for the acetone gas, the frequency changes in the proportional to the concentration of the gas. The reappearance of the gas reaction vs. frequency change was also able to be obtained properly.

  • PDF

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property

  • Kim, Tae Hyung;Song, Yoseb;Lee, Chan-Gi;Choa, Yong-Ho
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.351-356
    • /
    • 2017
  • Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.

Nano Structured Potentiometric Sensors Based on Polyaniline Conducting Polymer for Determination of Cr (VI)

  • Ali, Mohammad-Khah;Ansari, Reza;Delavar, Ali Fallah;Mosayebzadeh, Zahra
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1247-1252
    • /
    • 2012
  • In this paper, a potentiometric sensor based on polyaniline conducting polymer for potentiometric determination of Cr (VI) ions is reported. Polyaniline was synthesized electrochemically (cyclic voltammetry method) onto a micro pencil graphite electrode (0.7 mm diameter) in the presence of HCl and diphenylcarbazide (termed as (PGE/PAni/DPC). Some initial experiments were performed in order to find out the optimized conditions for preparation of the introduced Cr (VI) sensor electrode. The plot of E vs. log [Cr (VI)], showed a linear response in the range from $1.0{\times}10^{-6}$ to $1.0{\times}10^{-1}$ M. High repeatability with the detection limit of $8.0{\times}10^{-7}$ M was obtained.

촉각센싱기반 거칠고 젖은 표면 파지가 가능한 생체모사 로봇용 그리핑 기술 개발 (Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing)

  • 김다완
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.282-287
    • /
    • 2022
  • High shear adhesion on wet and rough surfaces and tactile feedback of gripping forces are highly important for realizing robotic gripper systems. Here, we propose a bioinspired robotic gripper with highly shear adhesion and sensitive pressure sensor for tactile feedback systems. To achieve them, we fabricated multi-walled carbon nanotube sensing layer on a thin polymeric adhesive layer of polydimethylsiloxane. With densely hexagonal-packed microstructures, the pressure sensor achieved 9 times the sensing property of a sensor without microstructures. We then assembled hexagonal microstructures inspired by the toe pads of a tree frog, giving strong shear adhesion under both dry and wet surfaces such as silicon (42 kPa for dry and ~30 kPa for underwater conditions) without chemical-residues after detachment. Our robotic gripper can prevent damage to weak or smooth surfaces that can be damaged at low pressure through pressure signal feedback suggesting a variety of robotic applications.

수정진동자를 이용한 센서시스템의 원리와 응용 (Principle of Sensor Systems by using a Quartz Crystal and Their Applications)

  • 김종민;장상목;김우식
    • Korean Chemical Engineering Research
    • /
    • 제47권6호
    • /
    • pp.655-668
    • /
    • 2009
  • 본 총설에서는 수정진동자 센서의 원리와 질량, 점성, 점탄성의 변화에 기초한 수정진동자 센서의 응용에 관하여 고찰하였다. 수정진동자의 기본원리와 공진주파수-공진저항 다이어그램에 관하여 상세히 기술하였다. 카본을 피막한 가스센스, 혈액응고를 이용한 센스, 전기화학분석, 결정화 분석 등에 관한 응용 예를 소개하였다. 이러한 연구 결과를 토대로 새로운 바이오센서나 화학센서 개발 가능성에 관하여 고찰하였다.

사물인터넷 기술을 이용한 가스상 물질 측정용 스마트센서 개발과 향후과제 (Development of an IoT Smart Sensor for Detecting Gaseous Materials)

  • 김욱;김영교;유연선;정기효;최원준;이완형;강성규;함승헌
    • 한국산업보건학회지
    • /
    • 제32권1호
    • /
    • pp.78-88
    • /
    • 2022
  • Objectives: To develop the smart sensor to protect worker's health from chemical exposure by adopting ICT (Information and Communications Technology) technologies. Methods: To develope real-time chemical exposure monitoring system, IoT (Internet of Things) sensor technology and regulations were reviewed. We developed and produced smart sensor. A smart sensor is a system consisting of a sensor unit, a communication unit, and a platform. To verify the performance of smart sensors, each sensor has been certified by the Korea Laboratory Accreditation Scheme (KOLAS). Results: Chemicals (TVOC; Total Volatile Organic Compounds, Cl2: Chlorine, HF: Hydrogen fluoride and HCN: Hydrogen cyanide) were selected according to a priority logic (KOSHA Alert, acute poisoning statistics, literature review). Notifications were set according to OEL (occupational exposure limit). Sensors were selected based on OEL and the capabilities of the sensors. Communication is designed to use LTE (Long Term Evolution) and Wi-Fi at the same time for convenience. Electronic platform were applied to build this monitoring system. Conclusions: Real-time monitoring system for OEL of hazardous chemicals in workplace was developed. Smart sensor can detect chemicals to complement monitoring of traditional workplace environmental monitoring such as short term and peak exposure. Further research is needed to expand the scope of application, improve reliability, and systematically application.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • 제10권3호
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.

UV/ozone 산화처리 및 화학적 식각공정을 적용한 그래핀 Grain Boundary 평가 방법 (Evaluation Method for Graphene Grain Boundary by UV/ozone-oxidation Chemical-etching Process)

  • 강재운;박홍식
    • 센서학회지
    • /
    • 제25권4호
    • /
    • pp.275-279
    • /
    • 2016
  • Chemical vapor deposited (CVD) polycrystalline graphene is widely used for various sensor application because of its extremely large surface-to-volume ratio. The electrical properties of CVD-graphene is significantly affected by the grain size and boundaries (GGBs), but evaluation of GGB of continuous monolayer graphene is difficult. Although several evaluation methods such as tunneling electron microscopy, confocal Raman, UV/ozone-oxidation are typically used, they still have issues in evaluation efficiency and accuracy. In this paper, we suggest an improved evaluation method for precise and simple GGB evaluation which is based on UV/ozone-oxidation and chemical etching process. Using this method, we could observe clear GGBs of CVD-graphene layers grown by different process conditions and statistically evaluate average grain sizes varying from $1.69{\sim}4.43{\mu}m$. This evaluation method can be used for analyzing the correlation between the electrical properties and grain size of CVD-graphene, which is essential for the development of graphene-based sensor devices.

화상분석을 이용한 소프트 센서의 설계와 산업응용사례 1. 외관 품질의 수치적 추정과 모니터링 (Soft Sensor Design Using Image Analysis and its Industrial Applications Part 1. Estimation and Monitoring of Product Appearance)

  • 유준
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.475-482
    • /
    • 2010
  • 화상분석(image analysis)을 이용하여 제품의 외관(外觀) 품질을 정량적으로 추정할 수 있는 소프트 센서를 설계하고, 이를 제품의 품질 모니터링에 적용하는 연구를 수행하였다. 여기에 사용된 방법론은 크게 다음의 세 단계로 구성되어 있다: (1) 웨이블릿 변환(wavelet transform)을 이용한 화상으로부터의 질감(texture) 특징 추출, (2) 추출된 질감특징의 부공간 투영(projection on subspace)을 통한 제품 외관의 추정, 그리고 (3) 질감특징의 잠재변수(latent variables) 즉, 외관의 수치적 추정치를 목적에 맞게 사용. 이 방법에서는 제품의 외관을 서로 다른 불연속적인 부류로의 분류 보다는, 연속적인 외관 변화를 일관적이고 정량적으로 추정하는데 초점을 두고자 한다. 이 방법은 인조대리석 외관의 수치적 추정과 품질 모니터링 적용사례를 통해 설명되었다.

고감도 수소센서를 위한 팔라듐 나노선의 전기화학적인 성장 (Electrochemical Growth of Palladium Nanowire for Highly Sensitive Hydrogen Sensor)

  • 조송이;강보라;임연호
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.21-24
    • /
    • 2010
  • 본 연구에서는 금속 전극사이에 팔라듐 나노선을 성장시키기 위해 직류와 이중전기영동 방법을 이용한 전기화학적 방법을 제안하였다. 팔라듐 나노선의 최적 성장 조건들을 파악하기 위해 교류의 인가 주파수 및 전압의 영향들이 조사되었다. 합성된 팔라듐 나노선들은 수백 나노미터의 직경과 $8\;{\mu}m$ 길이를 갖고 있으며, $1\;k{\Omega}$의 우수한 전기적 저항 특성을 보였다. 최종적으로 완성된 팔라듐 나노선들은 상온에서 수소 농도 100 ppm에서 2500 ppm의 범위에서 수소검출 평가를 수행하였으며, 수소센서에 적합한 우수한 검출 감도 및 응답시간을 보였다.