Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.5.351

The Synthesis Method of Tin Dioxide Nanoparticles by Plasma-Assisted Electrolysis Process and Gas Sensing Property  

Kim, Tae Hyung (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
Song, Yoseb (Department of Fusion Chemical Engineering, Hanyang University)
Lee, Chan-Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering (IAE))
Choa, Yong-Ho (Department of Fusion Chemical Engineering, Hanyang University)
Publication Information
Journal of Powder Materials / v.24, no.5, 2017 , pp. 351-356 More about this Journal
Abstract
Tin dioxide nanoparticles are prepared using a newly developed synthesis method of plasma-assisted electrolysis. A high voltage is applied to the tin metal plate to apply a high pressure and temperature to the synthesized oxide layer on the metal surface, producing nanoparticles in a low concentration of sulfuric acid. The particle size, morphology, and size distribution is controlled by the concentration of electrolytes and frequency of the power supply. The as-prepared powder of tin dioxide nanoparticles is used to fabricate a gas sensor to investigate the potential application. The particle-based gas sensor exhibits a short response and recovery time. There is sensitivity to the reduction gas for the gas flowing at rates of 50, 250, and 500 ppm of $H_2S$ gas.
Keywords
Plasma-assisted electrolysis; Nanoparticles; $SnO_2$; Gas sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Yamazoe, G. Sakai and K. Shimanoe: Catal. Surv. Asia, 7 (2003) 63.   DOI
2 H. Huang, O. K. Tan, Y. C. Lee, T. D. Tran, M. S. Tse and X. Yao: Appl. Phys. Lett., 87 (2005) 163123.   DOI
3 J. F. Mcaleer, P. T. Moseley, J. O. W. Norris, D. E. Williams, P. Taylor and B. C. Tofield: Mater. Chem. Phys., 17 (1987) 577.   DOI
4 R. S. Niranjans and I. S. Mulla: Mater. Eng. B, 103 (2003) 103.   DOI
5 J. Watson, K. Ihokura and G. S. V. Coles: Meas. Sci. Technol., 4 (1993) 711.   DOI
6 I. S. Imtiaz, N. S. Niranjan, Y. K. Hwang and J. S. Chang: J. Ind. Eng. Chem., 10 (2004) 1242.
7 R. E. Presley, C. L. Munsee, C. H. Park, D. Hong, J. F. Wager and D. A. Keszler: J. Phys. D: Appl. Phys., 37 (2004) 2810.   DOI
8 G. Jain and R. Kumar: Opt. Mater., 26 (2004) 27.   DOI
9 P. Meduri, C. Pendyala, V. Kumar, G. U. Sumanasekera and M. K. Sunkara: Nano Lett., 9 (2009) 612.   DOI
10 J. Stephens, A. K. Batra and J. R. Currie: Mat. Sci. and Appl., 3 (2012) 448.
11 R. K. Srivastava, P. Lai, R. Dwivedi and S. K. Srivastava: Sens. Actuator B, 21 (1994) 213.   DOI
12 K. C. Song and Y. Kang: Mater. Lett., 42 (2000) 283.   DOI
13 V. Briois, S. Belin, M. Z. Chalaca, R. H. A. Santos, C. V Santilli and S. H. Pulcinelli: Chem. Mater., 16 (2004) 3885.   DOI
14 G. E. Patil, D. D. Kajale, V. B. Gaikwad and G. H. Jain: Int. Nano Lett., 2 (2012) 17.   DOI
15 C. Ribeiro, E. J. H. Lee, T. R. Giraldi, E. Longo, J. A. Varela and E. R. Leite: J. Phys. Chem. B, 108 (2004) 15612.   DOI
16 A. L. Yerokhin, X. Nie, A. Leyland and A. Matthews: Surf. Coat. Tech., 130 (2000) 195.   DOI
17 A. Lugovskoy and M. Zinigrad: Materials Science - Advanced Topics (Yizhak Mastai), Intech, United Kingdom (2013) 85.
18 H. H. Son and W. G. Lee: Surf. Interface Anal., 44 (2012) 989.   DOI
19 Y. Zong, Y. Cao, D. Jia and P. Hu: Sens. Actuator B: Chem., 145 (2010) 84.   DOI
20 T. H. Kim, N. S. A Eom, S. O. Kang and Y. H. Choa: RSC Adv. 6 (2016) 20337   DOI
21 S. Abbasi, F. G. Fard, S. M. M. Mirhosseini, A. Ziaee and M. Mehrjoo: Mater. Sci. Eng. C, 33 (2013) 2555.   DOI
22 L. Mei, Y. Chen and J. Ma: Sci. Rep., 4 (2014) 602
23 X. Zhang, Y. Zhang, L. Chang, Z. Jiang, Z. Yao and X. Liu: Mater. Chem. Phys., 132 (2012) 909.   DOI