DOI QR코드

DOI QR Code

Evaluation Method for Graphene Grain Boundary by UV/ozone-oxidation Chemical-etching Process

UV/ozone 산화처리 및 화학적 식각공정을 적용한 그래핀 Grain Boundary 평가 방법

  • Kang, Jaewoon (School of Electronics Engineering, Kyungpook National University) ;
  • Park, Hongsik (School of Electronics Engineering, Kyungpook National University)
  • Received : 2016.07.14
  • Accepted : 2016.07.25
  • Published : 2016.07.31

Abstract

Chemical vapor deposited (CVD) polycrystalline graphene is widely used for various sensor application because of its extremely large surface-to-volume ratio. The electrical properties of CVD-graphene is significantly affected by the grain size and boundaries (GGBs), but evaluation of GGB of continuous monolayer graphene is difficult. Although several evaluation methods such as tunneling electron microscopy, confocal Raman, UV/ozone-oxidation are typically used, they still have issues in evaluation efficiency and accuracy. In this paper, we suggest an improved evaluation method for precise and simple GGB evaluation which is based on UV/ozone-oxidation and chemical etching process. Using this method, we could observe clear GGBs of CVD-graphene layers grown by different process conditions and statistically evaluate average grain sizes varying from $1.69{\sim}4.43{\mu}m$. This evaluation method can be used for analyzing the correlation between the electrical properties and grain size of CVD-graphene, which is essential for the development of graphene-based sensor devices.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva1, A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306, pp. 666-669, 2004. https://doi.org/10.1126/science.1102896
  2. A. K. Geim and K. S. Novoselov, "The rise of graphene", Nature materials, Vol. 6, pp. 183-191, 2007. https://doi.org/10.1038/nmat1849
  3. X. Li, W. Cai, J. An, S. Kim, J. Nah, D.Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-area synthesis of highquality and uniform graphene films on copper foils", Science, Vol. 324, pp. 1312-1314, 2009. https://doi.org/10.1126/science.1171245
  4. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, "Detection of individual gas molecules adsorbed on graphene", Nature materials, Vol. 6, pp. 652-655, 2007. https://doi.org/10.1038/nmat1967
  5. F. Schwierz, "Graphene transistors", Nature nanotechnology, Vol. 5, pp. 487-496, 2010. https://doi.org/10.1038/nnano.2010.89
  6. H. Choi, J-S Choi, J-H Choe, K. H. Chung, J-W Shin, J. T. Kim, D-H Youn, K-C Kim, J-I Lee, S-Y Choi, P. Kim, CG Choi and Y-J Yu, "Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers", Small, Vol. 10, pp. 3685-3691, 2014. https://doi.org/10.1002/smll.201400434
  7. G. Eda, G. Fanchini, M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nature nanotechnology, Vol. 3, pp. 270-274, 2008. https://doi.org/10.1038/nnano.2008.83
  8. Y. Kim, S. Kim, Y-J Kim, Y-S Shim, S. Kim, B. Hong and H. Jang, "Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending", ACS Nano, Vol. 9, pp. 10453-10460, 2015. https://doi.org/10.1021/acsnano.5b04680
  9. S. S. Varghese, S. Lonkar, K. K. Singh, S. Swaminathan and A. Abdala, "Recent advances in graphene based gas sensors", Sensors and Actuators B: Chemical, Vol. 218, pp. 160-183, 2015. https://doi.org/10.1016/j.snb.2015.04.062
  10. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene", Science, Vol. 312, pp. 1191-1196, 2006. https://doi.org/10.1126/science.1125925
  11. A. C. Ferrari, D. M. Basko, "Raman spectroscopy as a versatile tool for studying the properties of graphene", Nature nanotechnology, Vol. 8, pp. 235-246, 2013. https://doi.org/10.1038/nnano.2013.46
  12. K. Kim, Z. Lee,W. Regan, Kisielowski, M. F. Crommie, A. Zettl, "Grain boundary mapping in polycrystalline graphene", ACS Nano, Vol. 5, pp. 2142-2146, 2011. https://doi.org/10.1021/nn1033423
  13. D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H. Ta, K. P. So, S. J. Yoon, S. J. Chae, Y. W. Jo, M. H. Park, S. H. Chae, S. C. Lim, J. Y. Choi, Y. H. Lee, "Probing graphene grain boundaries with optical microscopy", Nature, Vol. 490, pp. 235-239, 2012. https://doi.org/10.1038/nature11562
  14. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo and R. S. Ruoff, "Graphene films with large domain size by a two-step chemical vapor deposition process", Nano Letters, Vol. 10, pp. 4328-4334, 2010. https://doi.org/10.1021/nl101629g