• Title/Summary/Keyword: Chemical Products

Search Result 3,821, Processing Time 0.028 seconds

Current status and prospects of approval of the new technology-based food additives (신기술이용 식품첨가물 국내·외 심사 현황 및 전망)

  • Rhee, Jin-Kyu
    • Food Science and Industry
    • /
    • v.52 no.2
    • /
    • pp.188-201
    • /
    • 2019
  • In the past, food additives were classified and managed as chemical synthetic and natural additives according to the manufacturing process, but it was difficult to confirm the purpose or function of food additives.CODEX, an internationalstandard, classifies food additives according to their practical use, based on scientific evidence on the technical effects of food additives, instead of classifying them as synthetic or natural. Therefore, very recently, the food additive standards in Korea have been completely revised in accordance with these global trends. Currently, the classification system of food additives is divided into 31 uses to specify their functions and purposes instead of manufacturing methods. Newer revision of the legislative framework for defining and expanding the scope of the Act as an enlarged area is required. Competition for preempting new food products based on bio-based technology is very fierce in order to enhance the safety of domestic people and maximize the economic profit of their own countries. In this age of infinite competition, it is very urgent to revise or supplement the current regulations in order to revitalize the domestic food industry and enhance national competitiveness through the development of food additives using new biotechnology. In this report, current laws on domestic food ingredients, food additives and manufacturing methods, and a comparison of domestic and foreign advanced countries' regulations and countermeasures strategies were reviewed to improve national competitiveness of domestic advanced biotechnology-based food additives industry.

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics (지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성)

  • Kang, Hee-Cheol;Kim, Chang-Min;Han, Raehee;Ryoo, Chung-Ryul;Son, Moon;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2019
  • Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

Predicting Forest Gross Primary Production Using Machine Learning Algorithms (머신러닝 기법의 산림 총일차생산성 예측 모델 비교)

  • Lee, Bora;Jang, Keunchang;Kim, Eunsook;Kang, Minseok;Chun, Jung-Hwa;Lim, Jong-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.1
    • /
    • pp.29-41
    • /
    • 2019
  • Terrestrial Gross Primary Production (GPP) is the largest global carbon flux, and forest ecosystems are important because of the ability to store much more significant amounts of carbon than other terrestrial ecosystems. There have been several attempts to estimate GPP using mechanism-based models. However, mechanism-based models including biological, chemical, and physical processes are limited due to a lack of flexibility in predicting non-stationary ecological processes, which are caused by a local and global change. Instead mechanism-free methods are strongly recommended to estimate nonlinear dynamics that occur in nature like GPP. Therefore, we used the mechanism-free machine learning techniques to estimate the daily GPP. In this study, support vector machine (SVM), random forest (RF) and artificial neural network (ANN) were used and compared with the traditional multiple linear regression model (LM). MODIS products and meteorological parameters from eddy covariance data were employed to train the machine learning and LM models from 2006 to 2013. GPP prediction models were compared with daily GPP from eddy covariance measurement in a deciduous forest in South Korea in 2014 and 2015. Statistical analysis including correlation coefficient (R), root mean square error (RMSE) and mean squared error (MSE) were used to evaluate the performance of models. In general, the models from machine-learning algorithms (R = 0.85 - 0.93, MSE = 1.00 - 2.05, p < 0.001) showed better performance than linear regression model (R = 0.82 - 0.92, MSE = 1.24 - 2.45, p < 0.001). These results provide insight into high predictability and the possibility of expansion through the use of the mechanism-free machine-learning models and remote sensing for predicting non-stationary ecological processes such as seasonal GPP.

A Study on the Flammability and Combustion Risk of Biodiesel Mixture (바이오디젤 혼합물의 인화 및 연소 위험성에 관한 연구)

  • Kim, Ju Suk;Ko, Jae Sun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Purpose: The purpose of this study is to determine the dangers of biodiesel and general diesel mixtures currently used as alternative fuels by equipment (tag method and penski Marten method) and to determine the difference between flash point and combustion point (closed, open) according to test methods. It is intended to be used as a reference material for identification and evaluation of firecausing substances by confirming the risk of mixtures by comparative analysis and measurement, and establishing a risk assessment method for chemical substances. Method: Flash point test method and result treatment were tested based on ASTM and KS M mode, which are tag sealing and pen schematense test methods used as flash point and combustion point test methods for crude oil and petroleum products. The manufacturer of the equipment used in this experiment was a test equipment that satisfies the test standards of KS M 2010 with equipment produced by TANAKA of Japan. The flash point and combustion point were measured, and the flash point according to the test method of biodiesel and general diesel mixture ( Closed, open), and the ignition point of a mixture of biodiesel and general diesel was compared and analyzed for ignition risk compared with conventional diesel. Results: Looking at the experimental results, first, as an analysis of the risk of flammability of the mixture, the flash point of a substance containing 70% biodiesel was found to be about 92℃ based on general diesel with a flash point of 64.5℃, and gasoline and biodiesel or When the biodiesel mixture was synthesized, it was confirmed that the flash point tends to decrease. In addition, the difference between the flash point and the combustion point was analyzed as about 20 ~ 30℃, and when a small amount of gasoline or methanol was mixed, the flash point was lowered, but it was confirmed that the combustion point was similar to that of the existing mixture. Conclusion: In this study, in order to secure the effectiveness of the details of the criteria for judging dangerous materials in the existing Dangerous Materials Safety Management Act, and to secure the reliability and reproducibility of the judgment of dangerous materials, we confirm the criteria for judging the risk of the mixture through an experimental study on flammable mixtures. It will be able to provide reference data for experimental criteria for flammable liquids that are regulated in the field. In addition, if this study accumulates know-how on experiment by test method, it is expected that it can be used as a basis for research on risk assessment and research on dangerous goods.

Large scale enzymatic production of chitooligosaccharides and their biological activities (키토산올리고당의 효소적 대량생산 및 생리활성)

  • Kim, Se-Kwon;Shin, Kyung-Hoon
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.2-32
    • /
    • 2020
  • In recent years, significant importance has been given to chitooligosaccharides (COS) due to its potent notable biological applications. COS can be derived from chitosan which is commonly produced by partially hydrolyzed products from crustacean shells. In order to produce COS, there are several approaches including chemical and enzymatic methods which are the two most common choices. In this regard, several new methods were intended to be promoted which use the enzymatic hydrolysis with a lower cost and desired properties. Hence, the dual reactor system has gained more attention than other newly developed technologies. Enzymatic hydrolysis derived COS possesses important biological activities such as anticancer, antioxidant, anti-hypersentive, anti-dementia (Altzheimer's disease), anti-diabeties, anti-allergy, anti-inflammatory, etc. Results strongly suggest that properties of COS can be potential materials for nutraceutical, pharmaceutical, and cosmeceutical product development.

The control of TiO2 nanofiber diameters using fabrication variables in electrospinning method (전기 방사 공정의 제조 변수를 이용한 TiO2 나노섬유의 직경 제어)

  • Yoon, Han-Sol;Kim, Bo-Sung;Kim, Wan-Tae;Na, Kyeong-Han;Lee, Jung-Woo;Yang, Wan-Hee;Park, Dong-Cheol;Choi, Won-Youl
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • TiO2 has been used in various fields such as solar cells, dental implants, and photocatalysis, because it has high physical and chemical stability and is harmless to the body. TiO2 nanofibers which have a large specific surface area also show a good reactivity in bio-friendly products and excellent photocatalysis in air and water purification. To fabricate TiO2 nanofibers, an electrospinning method was used. To observe the diameter of TiO2 nanofibers with fabrication variables, the fabrication variables was divided into precursor composition variables and process variables and microstructure was analyzed. The concentrations of PVP (Polyvinylpyrrolidone) and TTIP (Titanium(IV) isopropoxide) were selected as precursor composition variables, and inflow velocity and voltage were also selected as process variables. Microstructure and crystal structure of TiO2 nanofibers were analyzed using FE-SEM (Field emission scanning electron microscope) and XRD (X-ray diffraction), respectively. As-spun TiO2 nanofibers with an average diameter of about 0.27 ㎛ to 1.31 ㎛ were transformed to anatase TiO2 nanofibers with an average diameter of about 0.22 ㎛ to 0.78 ㎛ after heat treatment of 3 hours at 450℃. Anatase TiO2 nanofibers with an average diameter of 0.22 ㎛ can be expected to improve the photocatalytic properties by increasing the specific surface area. To change the average diameter of TiO2 nanofibers, the control of precursor composition variables such as concentrations of PVP and TTIP is more efficient than the control of electrospinning process variables such as inflow velocity and voltage.

A Comparative Study on the Chemical Characteristics and Antioxidant Effects of Sea Mustards Sourced from Different Areas in Taejongdae (태종대산 5종 돌미역의 화학성분 및 항산화활성 비교)

  • Kim, Hojun;Jayapala, HPS;Jo, Won Hee;Nam, Hyung Sik;Lim, Sun Young
    • Journal of Life Science
    • /
    • v.31 no.6
    • /
    • pp.559-567
    • /
    • 2021
  • This study compared the nutritional characteristics and antioxidant effects of sea mustards sourced from five different areas (Barammaegi, Gultongmeori, Chanmulgae, Johongtaek, and Goraedeung) in Taejongdae, Youngdo, Busan. The contents of total flavonoids and phenols and fatty acid composition were measured. To evaluate their antioxidant effects, 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays were used. Acetone/methylene chloride (A+M) extracts from all the sea mustards contained higher amounts of total flavonoids and phenols than methanol (MeOH) extracts. Among the sea mustards obtained from the different areas, the total flavonoid and total phenolic content of the A+M extract of the sea mustard from Gultongmeori was 1.44±0.04 mg/g and 1.72±0.06 mg/g, respectively. In terms of the fatty acid composition, the Gultongmeori sea mustard had higher percentages of total n-6, total n-3, eicosapentaenoic acid (EPA, 20:5n-3), and docosahexaenoic acid (DHA, 22:6n-3) than the sea mustards from the other areas. The A+M extract of the sea mustard from Gultongmeori was more effective in terms of scavenging free radicals as compared with that of the other sea mustards, as assessed by the DPPH and ABTS assays (p<0.05). In a 120-minute reactive oxygen species (ROS) production assay, all the extracts tested decreased cellular ROS production induced by H2O2 compared to that produced by exposure to an extract-free control (p<0.05). The extracts from Barammaegi and Gultongmeori had a greater inhibitory effect on cellular ROS production. These results indicated that the antioxidant effects of sea mustards might be associated with a higher amount of flavonoids and phenols. This study suggests that food-processed products from sea mustard can be developed as functional foods for promoting health in the local population.

Comparison of Substance Change and Antibacterial Activity Before and After Fermentation Using Resource Plants for The Development of Natural Preservatives (천연방부제 개발을 위한 자원식물을 활용한 발효 전·후 물질 변화와 항균활성 비교)

  • Seo A Jung;Youn Ok Jung;Ga Hyeon Song;No Bok Park
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.1
    • /
    • pp.20-35
    • /
    • 2023
  • Chemical preservatives have a good effect on antibacterial activity, but many side effects on the human body have been reported. Recently, the development of natural preservatives that are harmless to the human body and have preservative functions and self-efficacy is active. In addition, in order to increase the absorption rate of natural products by the human body, the method of fermentation using strains is also increasing. Therefore, this study selected varieties that are harmless to the human body and have good antibacterial activity. 1. The yield of origin, thickness and solvent was investigated. Scutellaria baicalensis Georgi was made in China and received a yield of 21.88% from 50% ethyl alcohol extract. Salvia miltiorrhiza Bunge was made in Korea and received a yield of 25.62% from 50% ethyl alcohol extract. Dryopteris crassirhizoma Nakai was made in China and received a yield of 6.50% from 70% ethyl alcohol extract. 2. The solid fermentation with the S. baicalensis and S. miltiorrhiza with B. Subtilis yield gained 24.40%, 39.30%, and D. crassirhizoma obtained 11.10% yield when fermented with L. casei. 3. After the liquid fermentation, a clear zone of 9mm was identified for the S. aureus strain in the S. baicalensis, and the antibacterial activity was not confirmed in S. miltiorrhiza and D. crassirhizoma. 4. When the S. baicalensis was fermented with L. Casei, it showed high antibacterial activity in C. albicans and S. aureus. S. miltiorrhiza showed antibacterial activity in S. aureus when it was solid with S. cerevisiae. When the spectators were solid with L. casei and S. cerevisiae, antibacterial activity was high in E. coli and S. aureus. Overall, the antibacterial activity after fermentation was much higher than when fermented. 5. The change in active ingredients was baicalin 101.57, baicalein 28.26, and wogonin 5.33mg/g in the S. baicalensis that did not ferment solid. When solid fermentation with S. cerevisiae, the content of baicalinin with baicalin 94.31, baicalein 30.41, and wogonin 3.57mg/g was found to have increased. S. miltiorrhiza that was not fermented, salvianolic acid A was 1.82mg/g, and when fermented with S. cerevisiae, it increased to 5.70mg/g. The active ingredients of the spectators were flavaspidic acid AP, flavaspidic acid PB, flavaspidic acid AB, and flavaspidic acid BB.

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry (첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황)

  • Sang-Mo Koh;Bum Han Lee;Chul-Ho Heo;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.781-797
    • /
    • 2023
  • Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

Numerical Study on Thermochemical Conversion of Non-Condensable Pyrolysis Gas of PP and PE Using 0D Reaction Model (0D 반응 모델을 활용한 PP와 PE의 비응축성 열분해 기체의 열화학적 전환에 대한 수치해석 연구)

  • Eunji Lee;Won Yang;Uendo Lee;Youngjae Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.37-46
    • /
    • 2024
  • Environmental problems caused by plastic waste have been continuously growing around the world, and plastic waste is increasing even faster after COVID-19. In particular, PP and PE account for more than half of all plastic production, and the amount of waste from these two materials is at a serious level. As a result, researchers are searching for an alternative method to plastic recycling, and plastic pyrolysis is one such alternative. In this paper, a numerical study was conducted on the pyrolysis behavior of non-condensable gas to predict the chemical reaction behavior of the pyrolysis gas. Based on gas products estimated from preceding literature, the behavior of non-condensable gas was analyzed according to temperature and residence time. Numerical analysis showed that as the temperature and residence time increased, the production of H2 and heavy hydrocarbons increased through the conversion of the non-condensable gas, and at the same time, the CH4 and C6H6 species decreased by participating in the reaction. In addition, analysis of the production rate showed that the decomposition reaction of C2H4 was the dominant reaction for H2 generation. Also, it was found that more H2 was produced by PE with higher C2H4 contents. As a future work, an experiment is needed to confirm how to increase the conversion rate of H2 and carbon in plastics through the various operating conditions derived from this study's numerical analysis results.