DOI QR코드

DOI QR Code

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry

첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황

  • Sang-Mo Koh (Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bum Han Lee (Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chul-Ho Heo (Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Otgon-Erdene Davaasuren (Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 고상모 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 이범한 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • 허철호 (한국지질자원연구원 광물자원연구본부 희소금속광상연구센터) ;
  • Received : 2023.11.01
  • Accepted : 2023.12.21
  • Published : 2023.12.29

Abstract

Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

최근 들어 첨단산업에 활용되는 핵심광물의 확보를 위한 광물수요국들의 대응이 빠르게 진행되고 있다. 흑연은 중국 생산량이 압도적 우위에 있지만, EV 배터리 부문의 기하급수적인 성장에 따라 글로벌 공급에서 변화가 초래되고 있으며, 동 아프리카에서의 활발한 탐사가 좋은 사례이다. 우리나라에서도 생산이 증가되고 있다. 희토류는 첨단산업에 폭넓게 사용되고 있는 핵심원료이다. 세계적으로 희토류를 생산하는 광상은 카보너타이트형, 라테라이트형 및 이온흡착형 광상이 개발 중에 있다. 중국의 생산이 다소 감소되는 추세이지만 여전히 압도적인 우위를 점하고 있다. 최근 수년간의 변화는 미얀마의 급부상과 베트남의 생산 증가이다. 니켈은 다양한 화학 및 금속 산업에 사용되어 온 금속이지만 최근 밧데리 비중이 점차 증가되고 있는 추세이다. 세계 니켈 광상은 초염기성암에서 유래된 유화형 광상과 라테라이트형 광상으로 크게 구분된다. 유화형 광상은 호주에서 개발이 지속적으로 증가 할 것으로 예측되며, 라테라이트형 광상은 인도네시아에서의 개발이 촉진 될 것으로 보인다. 리튬이온 배터리 수요에 따라 니켈 시장도 견인될 것으로 전망된다. 세계 리튬 광상은 염호형(78%)과 암석/광물형(스포듀민 19%), 점토형(3%)이 생산되고 있다. 암석형 광상이 염호형 광상보다 품위가 다소 높지만 매장량이 적고 페그마타이트에 함유된 스포듀민 리튬광물이 대상이다. 칠레, 아르헨티나, 미국에서는 염호형 광상을 주로 개발하고 있으며, 호주와 중국에서는 염호 및 암석/광물 두 근원으로부터 리튬을 추출하고 있고 캐나다에서는 암석/광물로부터만 생산한다. 바나듐은 전통적으로 강철 합금에 약 90% 이용되어 왔으나 최근 대규모 전력 저장을 위한 바나듐 레독스 흐름배터리 용도가 증가 추세에 있다. 세계 바나듐 공급원은 광산에서 생산하는 바나듐을 함유한 철광석(81%)과 부산물에서 회수하는 바나듐(2차 근원, 18%)으로 양대분 된다. 81%를 차지하는 바나듐-철광석 근원은 제강공정에서 유래된 바나듐 슬래그가 70%를 차지하고 광산에서 생산하는 1차 근원인 광석은 30%에 불가하다. 이러한 공급원으로부터 중간재인 바나듐 산화물이 제조된다. 바나듐 광상은 함바나듐 티탄자철석형 광상, 사암 모암형 광상, 셰일 모암형 광상과 바나듐산염형 광상으로 구분되는데 함바나듐 티탄자철석형 광상만이 현재 개발되고 있다.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부에서 지원한 한국지질자원 연구원기본사업(GP2023 -004)으로연구가수행되었습니다.

References

  1. Acumen Research and Consulting (2019) Vanadium Market Size Worth Around US$ 56 Billion by 2026: Acumen Research and Consulting. (https://www.globenewswire.com/news-release/2019/04/17/1806054/0/en/Vanadium-Market-Size-Worth-Around-US-56-Billion-by-2026-Acumen-Research-and-Consulting.html). 
  2. Albemarle (2016) Global Lithium Market Outlook. Goldman Sachs HCID Conference.
  3. Australian Vanadium Limited Ltd (2020) AGM Presentation. (https://www.australianvanadium.au/announcements/vl-agm-presentation-2020.pdf). 
  4. Baker Steel Capital Managers LLP (2022) Graphite-The diamond in the rough at the center of the battery revolution. (https://www.linkedin.com/pulse/graphite-diamond-rough-centre-battery). 
  5. BGS (2011) Rare Earth Elements. British Geological Survey, Minerals UK. 
  6. Bloomberg (2020) Redox Flow Battery Market Projected to Reach $309.9$309.9 Million by 2026, Growing at CAGR of 13.5%. (https://www.bloomberg.com/press-releases/2020-02-26/redox flow battery-market-projected-to-reach-309-9-million-by-2026-growing-at-cagr-of-13-5). 
  7. Champion, D. (2018) Australian Resource Reviews: Lithium 2018. Geoscience Australia. http://dx.doi.org/10.11636/9781925848281 
  8. Clark T. H. (1921) The origin of graphite. Economic Geology, v.16, p.167-183.  https://doi.org/10.2113/gsecongeo.16.3.167
  9. CSA Global (2019) An Overview of Lithium: Geology to Markets, GSSA-African Exploration Showcase 15. 
  10. Desaulty, A., Climent, D.M., Lefebvre, G., Cristiano, A., Peralta, D., Perret, S., Urban, A. and Guerrot, C. (2022) Tracing the origin of lithium in Li-ion batteries using lithium isotopes. Nature Communications, 13:4172. https://doi.org/10.1038/s41467-022-31850-y 
  11. DOE (2023) U.S. Department of Energy Releases 2023 Critical Materials Assessment to Evaluate Supply Chain Security for Clean Energy Technologies. (https://www.energy.gov/eere/articles/us-department-energy-releases-2023-critical-material-sssessment-evaluate-supply). 
  12. Ecclestone (2020) Neometals: Extracting Value from Steel By-Products. (http://hallgartenco.com/pdf/Battery/NMT_Vanadium_June2020.pdf). 
  13. Eckstrand, O.R. (1995) Magmatic nickel-copper-platinum group elements. In: Eckstrand, O.R., Sinclair,W.D., Thorpe, R.I. (Eds.), Geology of Canadian Mineral Deposit Types. The Geology of North America Series, Geological Society of America, v.P-1. Geological Survey of Canada, Geology of Canada, v.8, p.583-605. https://doi.org/10.1130/DNAG-GNA-P1.583 
  14. Elias, M. (2002) Nickel laterite deposits-geological overview, resources and exploitation. In: Cooke, D.R., Pongratz, J. (Eds.), Giant Ore Deposits: Characteristics, Genesis, and Exploration. Centre for Ore Deposit Research Special Publication, University of Tasmania, Hobart, v.4, p.205-220. 
  15. Geoscience News and Information (2023) (https://geology.com/articles/rare-earth-elements/). 
  16. Geoscience Australia (2023) Nickel. (https://www.ga.gov.au/scientifictopics/minerals/mineral-resources-nd-advice/australian-resource-reviews/nickel). 
  17. Gilligan, R. and Nikoloski, A.N. (2020) The extraction of vanadium from titanomagnetites and other sources. Minerals Engineering, v.146. https://doi.org/10.1016/j.mineng.2019.106106 
  18. Grand View Research (2021) Lithium Market Size, Share & Trends Analysis Report By Product(Carbonate, Hydroxide), By Application (Automotive, Consumer Goods, Grid Storage), By Region, And Segment Forecasts, 2021-2028. (https://www.grandviewresearch.com/industry-analysis/lithium-market). 
  19. Grohol, M., Veeh, C. and Grow, D.G. (2023) Study on the Critical Raw Materials for the EU 2023. European Commission. 
  20. Hoatson, D.M., Jaireth, S. and Jaques, A.L. (2006) Nickel sulfide deposits in Australia: Characteristics, resources, and potential. Ore Geology Reviews, v.29, p.177-241. https://doi.org/10.1016/j.oregeorev.2006.05.002 
  21. IEA (2021) The Role of Critical World Energy Transitions. World Energy Outlook Special Report. 
  22. Ito, A., Otake, T., Maulana, A., Sanematsu, K., Sufriadin, and Sato, T. (2021) Geochemical constraints on the mobilization of Ni and critical metals in laterite deposits, Sulaweshi, Indonesia: A mass-balance approach. Resource Geology, DOI: 10.1111/rge.12266. 
  23. Jo, S.D. and Park, G.H. (2021) Opportunities and challenges according to changing battery global supply chain. Institute for Intrenational Trade Focus 28, KITA. 
  24. JOGMEC (2020) "北米におけるレアア?スのサプライチェ?ン?況分析業務, 最終報告書". 
  25. Kavanagh, L., Keohane, J., Cabellos, G.C., Liyod, A. and Clery J. (2018) Global Lithium Sources-Industrial Use and Future in the Electric Vehicle Industry: A Review. Resources v.7. https://doi.org/10.3390/resources7030057 
  26. Kelly, K.D., Scott, C.T., Polyak, D.E. and Kimbell, B.E. (2017) Vanadium. Chapter U of Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply. USGS Professional Paper 1802-U. https://doi.org/10.3133/pp1802U 
  27. KIGAM (2023) 2023 Yearbook of Minerals Statistics. 
  28. Kim, G.H. and Park, G.H. (2021) Rare Earth Supply Chain in Korea and Major Countries: Current Status and Implications. IIT Trade Focus 18. 
  29. Lithium power (2017) Maricunga lithium brine project, Lithium power. (https://lithiumpower international.com). 
  30. Lithium South Development Corporation (2023) Hombre Muerto North Project. (https://www.lithiumsouth.com/projects/). 
  31. Luque, F., Huizenga, J., Crespo-Feo, E., Wada, H., Ortega, L. and Barrenechea, J. (2013) Vein graphite deposits: geological settings, origin, and economic significance. Mineralium Deposita, v.49, p.261-277. http://doi.org/10.1007/s00126-013-0489-9 
  32. Mining Review Africa (2023) Energy storage now the second largest consumer of vanadium. (https://www.miningreview.com/battery-metals/energy-storage-now-the-second-largest-consumer-of-vanadium). 
  33. MOCIE (2023) Strategy to secure critical minerals for the global leap in high-tech industries. 
  34. Mo R.J. (1989) Geology of graphite deposits. Beijing: China Architecture& Building Press (in Chinese with English abstract). 
  35. Naldrett, A.J. (2004) Magmatic Sulfide Deposits; Geology, Geochemistry and Exploration. Springer-Verlag, Berlin, 727p. 
  36. Reuters (2021) Booming stainless steel output to sustain nickel prices for months. (https://www.reuters.com/article/us-metalsnickel-idUSKBN2EW157). 
  37. S&P Global (2022) S&P Global Commodity Insights. (https://www.spglobal.com/commodityinsights/en/market-insights/latest-news/energy-transition/051022-infographic-africa-boom-graphite-mining-projects-ev-battery-demand-surges). 
  38. Seong, D.W. (2022) Trends and forecasts of battery mineral markets: Focusing on lithium, nickel, and cobalt, Korean Eximbank 2022 Industry Insite-2. 
  39. Simandl, G.J., Paradis, S. and Akam, C. (2015) Graphite deposit types, their origin, and economic significance. Symposium on critical and strategic materials, British Columbia Geological Survey Paper 2015-3. 
  40. SNe Research (2023) LIB 4 Major Materials Market Outlook. Insight Press Release. (https://www.sneresearch.com/en/insight/release_view/86/page/36?s_cat=%7C&s_keyword=). 
  41. Sykes, J. and Schodde, R. (2019) A global overview of the geology and economics of lithium production. AUSIMM Lithium Conference.
  42. UKDiss (2022) Industrial Rocks and Minerals: Graphite Commodity Report. (https://ukdiss.com/examples/graphite-commodity-1427.php) 
  43. USGS (2021) Mineral Commodity Summaries 2021. https://doi.org/10.3133/mcs2021 
  44. USGS (2023) Mineral Commodity Summaries 2023. https://doi.org/10.3133/mcs2023 
  45. Van Gosen, B.S., Verplanck, P.L., Seal II, R.R., Long, K.R. and Gambogi, J. (2017) Rare-Earth Elements. Chapter O of Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply, USGS Professional Paper 1802-O. https://doi.org/10.3133/pp1802 
  46. Villeneuve, M., Gunawan, W., Cornee, J. and Vidal, O. (2002) Geology of the central Sulaweshi belt(eastern Indonesia): constraints for geodynamic models. Intrenational Journal of Earth Sciences, 91, 524-537. http://doi.org/10.1007/s005310100228 
  47. Wissler, M. (2006) Graphite and carbon powders for electrochemical applications. Journal of Power Sources, v.156, p.142-150. http://doi/org/10.1016/j.jpowsour.2006.02.064 
  48. Zhou, B., Li, Z. and Chen, C. (2017) Global Potential of Rare Earth Resources and Rare Earth Demand from Clean Technologies. Minerals, v.7. https://doi.org/10.3390/min7110203