Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2021.31.1.008

The control of TiO2 nanofiber diameters using fabrication variables in electrospinning method  

Yoon, Han-Sol (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Kim, Bo-Sung (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Kim, Wan-Tae (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Na, Kyeong-Han (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Lee, Jung-Woo (WITH M-TECH Co., Ltd.)
Yang, Wan-Hee (WITH M-TECH Co., Ltd.)
Park, Dong-Cheol (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Choi, Won-Youl (Department of Advanced Materials Engineering, Gangneung-Wonju National University)
Abstract
TiO2 has been used in various fields such as solar cells, dental implants, and photocatalysis, because it has high physical and chemical stability and is harmless to the body. TiO2 nanofibers which have a large specific surface area also show a good reactivity in bio-friendly products and excellent photocatalysis in air and water purification. To fabricate TiO2 nanofibers, an electrospinning method was used. To observe the diameter of TiO2 nanofibers with fabrication variables, the fabrication variables was divided into precursor composition variables and process variables and microstructure was analyzed. The concentrations of PVP (Polyvinylpyrrolidone) and TTIP (Titanium(IV) isopropoxide) were selected as precursor composition variables, and inflow velocity and voltage were also selected as process variables. Microstructure and crystal structure of TiO2 nanofibers were analyzed using FE-SEM (Field emission scanning electron microscope) and XRD (X-ray diffraction), respectively. As-spun TiO2 nanofibers with an average diameter of about 0.27 ㎛ to 1.31 ㎛ were transformed to anatase TiO2 nanofibers with an average diameter of about 0.22 ㎛ to 0.78 ㎛ after heat treatment of 3 hours at 450℃. Anatase TiO2 nanofibers with an average diameter of 0.22 ㎛ can be expected to improve the photocatalytic properties by increasing the specific surface area. To change the average diameter of TiO2 nanofibers, the control of precursor composition variables such as concentrations of PVP and TTIP is more efficient than the control of electrospinning process variables such as inflow velocity and voltage.
Keywords
$TiO_2$; Nanofibers; Electrospinning; Variables; Diameter;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Li, H. Zhang, W. Zheng, W. Wang, H. Huang, C. Wang, A.G. MacDiarmid and Y. Wei, "Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers", J. Am. Chem. Soc. 130 (2008) 2036.
2 T.H. Hwang, W.T. Kim and W.Y. Choi, "Mixed dimensionality with a TiO2 nanostructure and carbon nanotubes for the photoelectrode in dye-sensitized solar cells", J. Nanosci. Nanotechnol. 17 (2017) 4812.   DOI
3 K.S. Mun, S. Alvarez, M. Sailor and W.Y. Choi, "A stable, label-free optical interferometric biosensor based on TiO2 nanotube arrays", ACS Nano. 4 (2010) 2070.   DOI
4 A. Kar, K. Raja and M. Misra, "Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications", Surf. Coat. Technol. 201 (2006) 3723.   DOI
5 J. Wang, J. Polleux, J. Lim and B. Dunn, "Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles", J. Phys. Chem. C. 111 (2007) 14925.   DOI
6 L. Tsui, T. Homma and G. Zangari, "Photocurrent conversion in an odized TiO2 nanotube arrays: Effect of the water content in anodizing solutions", J. Phys. Chem. C. 117 (2013) 6979.   DOI
7 L. Zou, Y. Luo, M. Hooper and E. Hu, "Removal of VOCs by photocatalysis process using adsorption enhanced TiO2-SiO2 catalyst", Chem. Eng. Process. 45 (2006) 959.   DOI
8 J.S. Dalton, P. Janes, N. Janes, K.R. Hallam, J.A. Nicholson and G.C. Allen, "Photocatalytic oxidation of NOx gases using TiO2: A spectroscopic approach", Acta. U. Carol. Med. 45 (2001) 8.
9 G.S. Enturk, E.I. Vovk, V.I. Zaikovskii, Z. Say, A.M. Bukhtiyarov and E. Ozensoy, "SOx uptake and release properties of TiO2/Al2O3 an d BaO/TiO2/Al2O3 mixed oxide systems as NOx storage materials", Catal. Today 184 (2012) 54.   DOI
10 J. Lyu, L. Zhu and C. Burda, "Considerations to improve adsorption and photocatalysis of low concentration air pollutants on TiO2", Catal. Today 225 (2014) 24.   DOI
11 J. Doshi and D.H. Renker, "Electrospinning process and applications of electrospun fibers", J. Electrostatics 35 (1995) 151.   DOI
12 S.H. Tan, R. Inai, M. Kotaki and S. Ramakrishna, "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process", Polymer. 46 (2005) 6128.   DOI
13 M. Mohammadian and A. Haghi, "Systematic parameter study for nano-fiber fabrication via electrospinning process", Bulg. Chem. Commun. 46 (2014) 545.
14 D. Li and Y. Xia, "Fabrication of titania nanofibers by electrospinning", Nano. Lett. 3 (2003) 555.   DOI
15 Y. Ibrahim, E. Hussein, M. Zagho, G. Abdo and A. Elzatahry, "Melt electrospinning designs for nanofiber fabrication for different applications", Int. J. Mol. Sci. 20 (2019) 1.   DOI
16 C.G. Lee, K.H. Na, W.T. Kim, D.C. Park, W.H. Yang and W.Y. Choi, "TiO2/ZnO nanofibers prepared by electrospinning and their photocatalytic degradation of methylene blue compared with TiO2 nanofibers", Appl. Sci-Basel 9 (2019) 3404.   DOI
17 S. Kandal, M. Singh and D. Sud, "Studies on TiO2/ZnO photocatalysed degradation of lignin", J. Hazard. Mater. 153 (2008) 412.   DOI
18 B. Tryba, A. Morawski, M. Inagaki and M. Toyoda, "The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts", Appl. Catal. B-Environ. 63 (2006) 215.   DOI
19 M. Phanikrishna, V. Durga and M. Subrahmanyam, "Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light", Chemosphere. 72 (2008) 644.   DOI
20 G. Colon, M. Maicu, M. Hidalgo and J. Navio, "Cu-doped TiO2 systems with improved photocatalytic activity", Appl. Catal. B-Environ. 67 (2006) 41.   DOI