• Title/Summary/Keyword: Chemical Gas Sensor

Search Result 285, Processing Time 0.019 seconds

Principle of Sensor Systems by using a Quartz Crystal and Their Applications (수정진동자를 이용한 센서시스템의 원리와 응용)

  • Kim, Jong-Min;Chang, Sang-Mok;Kim, Woo-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.655-668
    • /
    • 2009
  • The principle and applications of quartz crystal sensors based on the three basic concepts for mass, viscosity, and viscoelastic changes are reviewed. In the general discussion the basic principle of quartz crystal and realization of a resonant frequency-resonant resistance diagram are described in detail. As examples of their applications, gas sensing with a carbon-coated quartz crystal, determination of the blood coagulation factor, an electrochemical analysis and crystallization analysis are reported. The possibility of developing new biosensors and chemical sensors is discussed on the basis of these results.

UV Enhanced NO2 Sensing Properties of Pt Functionalized Ga2O3 Nanorods

  • An, Soyeon;Park, Sunghoon;Mun, Youngho;Lee, Chongmu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1632-1636
    • /
    • 2013
  • $Ga_2O_3$ one-dimensional (1D) nanostructures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the $Ga_2O_3$ nanostructures functionalized with Pt to $NO_2$ gas at room temperature under UV irradiation were examined. The diameters of the 1D nanostructures ranged from a few tens to a few hundreds of nanometers and the lengths ranged up to a few hundreds of micrometers. Pt nanoparticles with diameters of a few tens of nanometers were distributed around a $Ga_2O_3$ nanorod. The responses of the nanorods gas sensors fabricated from multiple networked $Ga_2O_3$ nanorods were improved 3-4 fold at $NO_2$ concentrations ranging from 1 to 5 ppm by Pt functionalization. The Pt-functionalized $Ga_2O_3$ nanorod gas sensors showed a remarkably enhanced response at room temperature under ultraviolet (UV) light illumination. In addition, the mechanisms via which the gas sensing properties of $Ga_2O_3$ nanorods are enhanced by Pt functionalization and UV irradiation are discussed.

A Study on CMP Properties of SnO2 Thin Film for Application of Gas Sensor (가스센서 적용을 위한 SnO2 박막의 CMP 특성 연구)

  • Lee, Woo-Sun;Choi, Gwon-Woo;Kim, Nam-Hoon;Park, Jin-Seong;Seo, Yong-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1296-1300
    • /
    • 2004
  • SnO$_2$ is one of the most suitable gas sensor materials. The microstructure and surface morphology of films must be controlled because the electrical and optical properties of SnO$_2$ films depend on these characteristics. The effects of chemical mechanical polishing(CMP) on the variation of morphology of SnO$_2$ films prepared by RF sputtering system were investigated. The commercially developed ceria-based oxide slurry, silica-based oxide slurry, and alumina-based tungsten slurry were used as CMP slurry. Non-uniformities of all slurries met stability standards of less than 5 %. Silica slurry had the highest removal rate among three different slurries, sufficient thin film topographies and suitable root mean square(RMS) values.

Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature (NO2 감응을 위한 Ag 금속입자가 기능화된 SnO2 나노선 기반 저온동작 센서)

  • Choi, Myung Sik;Kim, Min Young;Ahn, Jihye;Choi, Seung Joon;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, Ag-functionalized SnO2 nanowires are presented for NO2 gas sensitive sensors at low temperatures (50℃). SnO2 nanowires were synthesized using vapor-liquid-solid method, and Ag metal particles were functionalized on the surface of SnO2 nanowires using flame chemical vapor deposition method. As a result of the sensing test about Ag-functionalized SnO2 nanowires based sensor, the response (Rg/Ra) to 10 ppm NO2 was 1.252 at 50℃. We believe that metal-functionalizing is a one of good way to increase the feasibility about semiconductor gas sensor.

Sensing Properties of Au Nanoparticle-Functionalized ZnO Nanowires by γ-Ray Radiolysis

  • Katoch, Akash;Choi, Sun-Woo;Byun, Joon-Hyuk;Kim, Sang-Sub
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.180-185
    • /
    • 2012
  • ${\gamma}$-ray radiolysis was used to functionalize networked ZnO nanowires with Au nanoparticles. The networked ZnO nanowires were prepared through a vapor phase selective growth method. The sensing performances of the Au-functionalized ZnO nanowires were investigated in terms of $NO_2$, CO and benzene gases. The Au-funtionalized ZnO nanowire sensors showed an applicable, reliable capability to detect the gases, indicating their potential in chemical gas sensors.

Hydrogen Sensing Property of Porous Carbon Nanofibers by Controlling Pore Structure and Depositing Pt Catalyst (기공구조 조절 및 Pt촉매 증착을 이용한 다공성 탄소나노섬유의 수소가스 감지특성)

  • Kang, Seok Chang;Im, Ji Sun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.243-248
    • /
    • 2011
  • Pt deposited porous carbon nanofibers was prepared as a highly sensitive material of hydrogen gas sensor operating at room temperature. Nanofibers was obtained by electrospinning method using polyacrylonitrile as a carbon precursor and then thermally treated for carbon nanofibers. Chemical activation of carbon nanofibers was carried out to enlarge specific surface area up to $2093m^2/g$. Sputtered Pt layer was uniformly distributed keeping the original shape of carbon nanofibers. The hydrogen gas sensing time and sensitivity were improved based on effects of high specific surface area, micropore structure and deposited Pt catalyst.

The Change of $NO_{2}$ Sensing Characteristics for Carbon Nanotubes with Growth and Post Treatment Conditions (탄소 나노튜브의 성장 및 후처리 조건에 따른 이산화질소 감지특성의 변화)

  • Lee, R.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.65-70
    • /
    • 2006
  • Carbon nanotubes (CNT) grown by chemical vapor deposition (CVD) and plasma enhanced chemical vapor deposition (PECVD), and followed by annealing at $400{\sim}500^{\circ}C$ were investigated for gas sensing under 1.5ppm $NO_{2}$ concentration at an operating temperature of $200^{\circ}C$. The electrical resistance of CNT sensor decreased with temperature, indicating a semiconductor type. The resistance of CNT sensor decreased with $NO_{2}$ adsorption. It was found that the sensitivity of sensor was affected by humidity and decreased under microwave irradiation for 3 minutes. The CNT sensor grown by PECVD had a higher sensitivity than that of CVD.

  • PDF

Development of Oxygen Sensor for the Oxygen Concentration Measuring of Air-fuel Ratio Measuring System (공연비 측정시스템의 산소농도 측정을 위한 센서 개발)

  • Lee, Jin-Hui;Choi, Ko-Yeol;Jang, Hyang-Dong;Kim, Yang-Soo;Cho, Dong-Hoe;Park, Myon-Yong;Chung, Koo-Chun;Cho, Jin-Weon
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.472-477
    • /
    • 1999
  • It was developed the oxygen sensor of air-fuel ratio measuring system that was controlled the needed air amounts in optimum combustion according to the analysis of oxygen concentration of exhaust gas. The oxygen sensor was prepared by using gold as cathode, which the detection range for the oxygen concentration was from 0.0% to 30.0%. Response time was observed 15 to 20 sec. rapidly and selectively. It was appeared a good result in reproducibility and stability.

  • PDF

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

Ultrasonic-detecting Characteristics by Partial Discharge using the Fiber Mach-Zehnder Interferometerin Insulating Oil (광섬유 Mach-Zehnder 간섭계를 이용한 부분방전 초음파 검출특성)

  • 심승환;이광식;이상훈;김달우
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.325-328
    • /
    • 2002
  • The partial-discharge(PD) is accompanied by physical and chemical phenomena, such as heat, light, noise, gas, chemical transformation, electric current, and electromagnetic radiation. The PD can be detected by measuring one of these changes. Although some techniques are employed in this purpose, several obstacles interfere with an on-line measurement. Now a fiber-optic sensor for detecting ultrasonics is suggested for the on line measurement system with high accuracy. In this paper, an optical fiber sensor utilizing the principal of Mach-Zehnder interferometer was proposed to detect the discharge signal.

  • PDF