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1. INTRODUCTION

One-dimensional oxide nanomaterials, including
nanowires, nanofibers, and nanotubes have been
considered as ideal building blocks for development of
nanoscale sensors, not only because of their chemical and
thermal stability, but also due to their higher surface area.
In the family of metal-oxide materials, zinc oxide(ZnO) is
an n- type semiconductor with a wide-band-gap of 3.6 eV
and a large exciton binding energy of 60 meV, which make
it a promising candidate for use in various electronic
devices. Furthermore, ZnO has also been used to detect
toxic and combustible gases[1, 2]. Therefore, ZnO
nanowires with a higher surface-to-volume ratio will
significantly enhance the sensing properties of ZnO in
comparison to its other forms such as bulk or thin films. 

In general, sensors based on single nanowires have
shown higher sensitivity and selectivity. However, their
fabrication process involves expensive and tedious
lithography processes. In addition, an expensive
measurement unit is usually required to measure the
infinitesimal current variation during absorption or
desorption of gaseous species on the surface of nanowires.
Due to the higher fabrication cost and poor reproducibility,
the practical applications of single nanowires to chemical
gas sensors remain challenging[3]. Networked nanowire-
based sensors are an alternative to sensors based on single

nanowires, even though they possess sensitivity that is a
little lower, and longer response and recovery times in
comparison to single nanowire sensors. 

In recent years, many efforts have been devoted to
improving the sensing properties of oxide nanowires by
catalyst functionalization, metal doping and creation of
heterostructures[4-6]. Metallic nanoparticles such as Au, Pt
and Pd have been used as catalysts to enhance the sensing
properties[7-9]. The metallic nanoparticles functionalized
on the surface of oxide materials readily dissociate the gas
molecules into ions or neutral chemical species, resulting in
higher gas sensitivity[10]. Various methods such as
photochemistry[11], arc discharge[12] and sonochemistry
[13] have been used to synthesize metallic nanoparticles. γ-
ray radiolysis is another effective route to synthesize
metallic nanoparticles[14] and can be employed to
functionalize oxide nanowires. 

In this work, we prepared networked ZnO nanowires by
a selective growth method and subsequently functionalized
their surfaces with Au nanoparticles via γ-ray radiolysis.
The sensing properties of the Au-functionalized ZnO
nanowires were investigated at different temperatures in
the presence and absence of NO2, CO and benzene gases.

2. EXPERIMENTAL DETAILS

The preparation of Au-functionalized ZnO networked
nanowire sensors includes the following two steps. In the
first step, the selective growth of networked ZnO
nanowires were carried out, particularly on patterned
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interdigital electrodes(PIEs), by using the well-known
vapor-liquid-solid(VLS) growth method. The PIEs were
prepared beforehand on SiO2/Si(100) substrates using a
conventional lithography process, followed by the
subsequent deposition by sputtering of tri-layers
comprising Au(3 nm)/Pt (100 nm)/Ni (50 nm). The Au
layer played a role as a catalyst for the selective growth of
ZnO nanowires. ZnO nanowires with network junctions
were selectively grown on 10-µm-spacing PIEs. The
conditions used for fabrication of ZnO nanowires are
described in detail in our previous report[15].

In the second step, Au nanoparticles were decorated on
the surface of ZnO nanowires using γ-ray radiolysis. The
precursor solution for synthesis of Au nanoparticles was
prepared by dissolving 0.248 mM of hydrogen
tetrachloroaurate (III) hydrate(HAuCl2.nH2O, n = 3.5,
Kojima Chemicals Co.) in a mixed solvent of 2-propanol.
The prepared solution was stirred for 24 h. Then the
prepared networked ZnO nanowires were immersed into
the precursor solution. Then they were illuminated with 10
kGyh-1 60Co γ-rays for 2 h in ambient air at room
temperature, in order to achieve optimum size and higher
density of Au nanoparticles on the surface of ZnO
nanowires[16]. The prepared samples were heat treated at
500 。C for 1 h in air to remove any remaining solvent.

The microstructure of the Au-functionalized ZnO
nanowires was investigated using field-emission scanning
electron microscopy(FE-SEM, Hitachi-4200) and
transmission electron microscopy(TEM, Philips CM-200).
Their responses to NO2, CO and benzene were measured
using a custom-made sensing system consisting of a
horizontal-type tube furnace and mass flow controllers.
The sensor was kept inside the tube furnace, and the
temperature was varied in the range of 50 。C – 300 。C.
The change in resistance in the sensor devices was
measured by connecting them to an electrical measuring
unit(Keithley 2400) interfaced with a computer. The
measurements were performed at various temperatures.
The response(R) was estimated as R = Rg/Ra, where Rg is
the resistance measured in the presence of NO2, and Ra is
the resistance in the absence of NO2. The converse was
applied for the cases of CO and benzene. Here, the
response time and recovery time are defined as the time
taken by the sensor to change to 90 % of the initial
resistance.

3. RESULTS AND DISCUSSIONS

Networked ZnO nanowires were selectively grown on
PIE with an Au catalytic layer of ~3 nm thickness. Fig. 1a
shows a plan-view of selectively-grown networked ZnO
nanowires on the 10-um-spacing PIE. It is evident that the
ZnO nanowires grown on the PIE were entangled with
each other and eventually formed junctions. Fig. 1b reveals
the cross-section view of the networked ZnO nanowires,
which also definitely confirms the formation of highly
dense junctions in the middle space region between the
PIEs. The γ-ray radiolysis was used to functionalize the
ZnO nanowires with Au nanoparticles. Fig. 2 shows low-
and high-magnification images of Au-functionalized
networked ZnO nanowires. Fig. 2b clearly reveals that ~15
nm diameter Au nanoparticles are uniformly distributed on
the surface of the ZnO nanowires.

The microstructure of Au nanoparticles functionalized on
the surface of ZnO nanowires was further analyzed by TEM.
Fig. 3a shows the uniformly-decorated Au nanoparticles on
the surface of ZnO nanowires. The lattice fringes of both the
ZnO nanowire and Au nanoparticles, observed in the high
resolution TEM image, are shown in Fig. 3b. The arrows
show Au nanoparticles decorated on the ZnO nanowires.
Both the ZnO nanowire and the Au nanoparticles appear free
from considerable structural defects such as dislocations or
stacking faults. The lattice spacings were in good agreement
with those of ZnO and Au.
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Fig. 1. (a) Plan-view of networked ZnO nanowires grown on
patterned electrodes via the selective growth method. (b)
Cross-sectional view of the networked ZnO nanowires.
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The sensing performances of the Au-functionalized
networked ZnO nanowires have been tested in terms of
their capability to sense NO2 gas in a temperature range of
50 to 300 。C. The results are shown in Fig. 4. In general,
the ZnO nanowire sensors are most sensitive at 200 。C -
300 。C[17]. In this temperature zone, the interaction of
NO2 gas molecules with the surface of ZnO materials is
likely to be most active. In the Au-functionalized
networked ZnO nanowires, the resistance follows the
supply/cut off of NO2 gas. The response and recovery
times shortened rapidly from 240 s to 100 s and 74 s to 33 s
as temperature increased from 50 。C to 300 。C. The
response time for the Au-functionalized networked ZnO
nanowires was similar to the bare ZnO network
nanowires[18], whereas the Au-functionalized networked
ZnO nanowires showed a much shorter recovery time of
33 s in comparison to 572 s for the bare networked ZnO
nanowires. The corresponding response is summarized in
Fig. 4e. The sensor response obtained was as low as 0.1
ppm NO2. The best sensing properties of the Au-
functionalized networked ZnO nanowires to NO2 were
obtained at 250 。C, which is shown in Fig. 4c. This is
likely to be due to the faster adsorption and desorption of
NO2 at that temperature. However, the Au-functionalized
networked ZnO nanowire sensor shows no significant
difference in response value[18]. In order to estimate the

NO2 gas sensing capability of gas sensors prepared in this
work, the response is compared with other ZnO-based one-
dimensional nanostructures in Fig. 4f[19- 21].

The gas sensing properties of the Au-functionalized
networked ZnO nanowires sensors can be explained on the
basis of n-type semiconductors. During exposure of bare
ZnO nanowires to NO2 gas, the resistance of the sensor
increases, but it decreases upon removal of NO2. The
adsorbed NO2 molecules on the surface of ZnO nanowires
are likely to enhance the surface depletion of each ZnO
nanowire by extracting electrons from them, creating more
surface depletion regions on individual ZnO nanowires.
These extracted electrons are released back to the
conduction band of ZnO nanowires during desorption of
NO2. This adsorption and desorption process naturally
leads to a change in resistance of the sensor.

Meanwhile, Au nanoparticles play a role as catalysts by
inducing either more adsorption or easy dissociation of
NO2 molecules. The Au nanoparticles attached to the
surface of ZnO nanowires enhance the adsorption of NO2

molecules through the spillover effect[10]. The NO2

molecules adsorb easily on Au nanoparticles and migrate
into ZnO nanowires, which enhance the depletion region
further, thereby suppressing the underlying conducting
channel more. The overall effect enhances the size of
depletion layer and increases resistance. 
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Fig. 2. (a) Plan-view of networked ZnO nanowires functionalized
with Au nanoparticles through γ-ray radiolysis. (b)
Microstructure of Au nanoparticles decorated on the
surface ZnO nanowires grown under 10 kG h-1 60Co γ-rays
for 2 h.

Fig. 3. TEM images of Au nanoparticles on the surface ZnO
nanowires with (a) low and (b) high magnifications.
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The sensing behavior of the Au-functionalized ZnO
nanowires was also investigated in the presence of CO at
50 。C and benzene at 100 。C. The typical response curves
and the summary of the responses are shown in Fig. 5. The
sensor shows a relatively faster response time of 140 s for
CO in comparison to 250 s for benzene. 

4. CONCLUSIONS

Networked ZnO nanowires were successfully
functionalized with Au nanoparticles via γ-ray radiolysis.
The Au-functionalized ZnO nanowires showed decrements
in response and recovery times from 240 s to 100 s and 74
s to 33 s as temperature increased from 50 。C to 300 。C.
The Au-functionalized ZnO nanowires showed reasonable
response for NO2 at 250 。C, CO at 50 。C and benzene at
100 。C. The improvement in response is likely due to the
spillover effect of Au nanoparticles on the surface of ZnO
nanowires.
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