Browse > Article
http://dx.doi.org/10.6117/kmeps.2020.27.2.011

Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature  

Choi, Myung Sik (Department of Materials Science and Engineering, Yonsei University)
Kim, Min Young (Department of Materials Science and Engineering, Yonsei University)
Ahn, Jihye (Department of Materials Science and Engineering, Yonsei University)
Choi, Seung Joon (Department of Materials Science and Engineering, Yonsei University)
Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.27, no.2, 2020 , pp. 11-17 More about this Journal
Abstract
In this study, Ag-functionalized SnO2 nanowires are presented for NO2 gas sensitive sensors at low temperatures (50℃). SnO2 nanowires were synthesized using vapor-liquid-solid method, and Ag metal particles were functionalized on the surface of SnO2 nanowires using flame chemical vapor deposition method. As a result of the sensing test about Ag-functionalized SnO2 nanowires based sensor, the response (Rg/Ra) to 10 ppm NO2 was 1.252 at 50℃. We believe that metal-functionalizing is a one of good way to increase the feasibility about semiconductor gas sensor.
Keywords
$NO_2$; Sensor; $SnO_2$; Ag; Nanowires;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. Wang, Y. Wang, J. Cao, F. Kong, H. Xia, J. Zhang, B. Zhu, S. Wang, and S. Wu, "Low-temperature $H_2S$ sensors based on Ag-doped ${\alpha}-Fe_2O_3$ nanoparticles", Sens. Actuators B-Chem., 131, 183 (2008).   DOI
2 Z. Li, X. Niu, Z. Lin, N. Wang, H. Shen, W. Liu, K. Sun, Y.Q. Fu, and Z. Wang, "Hydrothermally synthesized $CeO_2$ nanowires for $H_2S$ sensing at room temperature", J. Alloys Compd., 682, 647 (2016).   DOI
3 J.-H. Kim, A. Mirzaei, H. W. Kim, and S. S. Kim, "Low power-consumption CO gas sensors based on Au-functionalized $SnO_2$-ZnO core-shell nanowires", Sens. Actuators B-Chem., 267, 597 (2018).   DOI
4 S.-W. Choi, S.-H. Jung, J. Y. Park, and S. S. Kim, "Improvement in sensing properties of $SnO_2$ nanowires by functionalizing with Pt nanodots synthesized by ${\gamma}$-ray radiolysis", J. Nanosci. Nanotechno., 12, 1526 (2012).   DOI
5 L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, and C. Wei, "A novel low temperature gas sensor based on Pt-decorated hierarchical 3D $SnO_2$ nanocomposites", Sens. Actuators B-Chem., 232, 91 (2016).   DOI
6 A. S. M. I. Uddin, D.-T. Phan, and G.-S. Chung, "Low temperature acetylene gas sensor based on Ag nanoparticlesloaded ZnO-reduced graphene oxide hybrid", Sens. Actuators B-Chem., 207, 362 (2015).   DOI
7 F. Wang, K. Hu, H. Liu, Q. Zhao, K. Wang, and Y. Zhang, "Low temperature and fast response hydrogen gas sensor with Pd coated $SnO_2$ nanofiber rods", Int. J. Hydrog. Energy, 45, 7234 (2020).   DOI
8 S. G. Chatterjee, S. Chatterjee, A. K. Ray, and A. K. Chakraborty, "Graphene-metal oxide nanohybrids for toxic gas sensor: A review", Sens. Actuators B-Chem., 221, 1170 (2015).   DOI
9 S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe, "Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors", Jpn. J. Appl. Phys., 27, 1798 (1988).   DOI
10 X. Xu, Y. Chen, G. Zhang, S. Ma, Y. Lu, H. Bian, and Q. Chen, "Highly sensitive VOCs-acetone sensor based on Agdecorated $SnO_2$ hollow nanofibers", J. Alloys Compd., 703, 572 (2017).   DOI
11 R. S. E. Shamy, D. Khalil, and M. A. Swillam, "Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer", Sci. Rep., 10, 1293 (2020).   DOI
12 N. Yamazoe, "Toward innovations of gas sensor technology", Sens. Actuators B-Chem., 108, 2 (2005).   DOI
13 S. Mahajan and S. Jagtap, "Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review", Appl. Mater. Today, 18, 100483 (2020).   DOI
14 A. Dey, "Semiconductor metal oxide gas sensors: A review", Mater. Sci. Eng., B 229, 206 (2018).   DOI
15 K. M. Yoo, J. Midkiff, A. Rostamian, C. Chung, H. Dalir, and R. T. Chen, "InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor", ACS Sens., 5, 861 (2020).   DOI
16 H. Wan, Y. Gan, J. Sun, T. Liang, S. Zhou, and P. Wang, "High sensitive reduced graphene oxide-based room temperature ionic liquid electrochemical gas sensor with carbon-gold nanocomposites amplification", Sens. Actuators B-Chem., 299, 126952 (2019).   DOI
17 M. A. H. Khan, M. V. Rao, and Q. Li, "Recent advances in electrochemical sensors for detecting toxic gases: $NO_2,\;SO_2$ and $H_2S$", Sens., 19, 905 (2019).   DOI
18 N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira Jr., and L. Lin, "A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides", Microchim. Acta., 185, 213 (2018).   DOI
19 R. Godbole, S. Ameen, U. T. Nakate, M. S. Akhtar, and H.-S. Shin, "Low temperature HFCVD synthesis of tungsten oxide thin film for high response hydrogen gas sensor application", Mater. Lett., 254, 398 (2019).   DOI
20 Q. Wang, J. Bai, B. Huang, Q. Hu, X. Cheng, J. Li, E. Xie, Y. Wang, and X. Pan, "Design of $NiCo_2O_4@SnO_2$ heterostructure nanofiber and their low temperature ethanol sensing properties", J. Alloys Compd., 791, 1025 (2019).   DOI
21 R. S. Ganesh, M. Navaneethan, V. L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P. S. Patil, and Y. Hayakawa, "Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature", Sens. Actuators B-Chem., 255, 672 (2018).   DOI
22 R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, "Zinc oxide nanostructures for $NO_2$ gas-sensor applications: A review", Nanomicro Lett., 7, 97 (2015).
23 J. Y. Park, W. J. Lee, H. J. Nam, and S.-H. Choa, "Technology of stretchable interconnector and strain sensors for stretchable electronics", J. Microelectron. Packag. Soc., 25(4), 25 (2018).   DOI
24 Y. B. Shin, Y. H. Ju, and J.-W. Kim, "Technical trends of metal nanowire-based electrode", J. Microelectron. Packag. Soc., 26(4), 15 (2019).
25 M. S. Choi, J. H. Bang, A. Mirzaei, W. Oum, H. G. Na, C. Jin, S. S. Kim, and H. W. Kim, "Promotional effects of ZnObranching and Au-functionalization on the surface of $SnO_2$ nanowires for $NO_2$ sensing", J. Alloys Compd., 786, 27 (2019).   DOI
26 M. S. Choi, H. G. Na, S. Kim, J. H. Bang, W. Oum, S. -W. Choi, S. S. Kim, K. H. Lee, H. W. Kim, and C. Jin, "Synthesis of Au/$SnO_2$ nanostructures allowing process variable control", Sci. Rep., 10, 346 (2020).   DOI
27 Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, and W. Yu, "Ag nanoparticle embedded-ZnO nanorods synthesized via a photochemical method and its gas-sensing properties", Sens. Actuators B-Chem., 143, 635 (2000).
28 M. S. Choi, J. H. Bang, A. Mirzaei, H. G. Na, C. Jin, W. Oum, S. S. Kim, and H. W. Kim, "Exploration of the use of p-$TeO_2$-branch/n-$SnO_2$ core nanowires nanocomposites for gas sensing", Appl. Surf. Sci., 484, 1102 (2019).   DOI
29 V. N. Singh, B. R. Mehta, R. K. Joshi, F. E. Kruis, and S. M. Shivaprasad, "Enhanced gas sensing properties of $In_2O_3$:Ag composite nanoparticle layers; electronic interaction, size and surface induced effects", Sens. Actuators B-Chem., 125, 482 (2007).   DOI
30 J. Zhang and K. Colbow, "Surface silver clusters as oxidation catalysts on semiconductor gas sensors", Sens. Actuators B-Chem., 40, 47 (1997).   DOI
31 P. Hu, G. Du, W. Zhou, J. Cui, J. Lin, H. Liu, D. Liu, J. Wang, and S. Chen, "Enhancement of ethanol vapor sensing of $TiO_2$ nanobelts by surface engineering", ACS Appl. Mater. Interfaces., 2, 3263 (2010).   DOI
32 Z. Wen, L, Tian-mo, and L. De-jun, "Formaldehyde gas sensing property and mechanism of $TiO_2$-Ag nanocomposite", Physica B-Condens. Matter, 405, 4235 (2010).   DOI
33 J. Wang, B. Zou, S. Ruan, J. Zhao, and F. Wu, "Synthesis, characterization, and gas-sensing property for HCHO of Agdoped $In_2O_3$ nanocrystalline powders", Mater. Chem. Phys., 117, 489 (2009).   DOI