DOI QR코드

DOI QR Code

UV Enhanced NO2 Sensing Properties of Pt Functionalized Ga2O3 Nanorods

  • An, Soyeon (Department of Materials Science and Engineering, Inha University) ;
  • Park, Sunghoon (Department of Materials Science and Engineering, Inha University) ;
  • Mun, Youngho (Department of Materials Science and Engineering, Inha University) ;
  • Lee, Chongmu (Department of Materials Science and Engineering, Inha University)
  • Received : 2013.02.05
  • Accepted : 2013.03.05
  • Published : 2013.06.20

Abstract

$Ga_2O_3$ one-dimensional (1D) nanostructures were synthesized by using a thermal evaporation technique. The morphology, crystal structure, and sensing properties of the $Ga_2O_3$ nanostructures functionalized with Pt to $NO_2$ gas at room temperature under UV irradiation were examined. The diameters of the 1D nanostructures ranged from a few tens to a few hundreds of nanometers and the lengths ranged up to a few hundreds of micrometers. Pt nanoparticles with diameters of a few tens of nanometers were distributed around a $Ga_2O_3$ nanorod. The responses of the nanorods gas sensors fabricated from multiple networked $Ga_2O_3$ nanorods were improved 3-4 fold at $NO_2$ concentrations ranging from 1 to 5 ppm by Pt functionalization. The Pt-functionalized $Ga_2O_3$ nanorod gas sensors showed a remarkably enhanced response at room temperature under ultraviolet (UV) light illumination. In addition, the mechanisms via which the gas sensing properties of $Ga_2O_3$ nanorods are enhanced by Pt functionalization and UV irradiation are discussed.

Keywords

References

  1. Fleischer, M.; Meixner, H. Sens. Actuators B 1998, 52, 179. https://doi.org/10.1016/S0925-4005(98)00271-8
  2. Frank, J.; Fleischer, M.; Meixner, H.; Feltz, A. Sens. Actuators B 1998, 49, 110. https://doi.org/10.1016/S0925-4005(98)00094-X
  3. Baban, C.; Toyoda, Y.; Ogita, M. Thin Solid Films 2005, 484, 369. https://doi.org/10.1016/j.tsf.2005.03.001
  4. Trinchi, A.; Wlodarski, W.; Li, Y. X. Sens. Actuators B 2004, 100,94. https://doi.org/10.1016/j.snb.2003.12.028
  5. Ohta, H.; Nomura, K.; Hiramatsu, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Solid State Electron. 2003, 47, 2261. https://doi.org/10.1016/S0038-1101(03)00208-9
  6. Xie, H.; Chen, L.; Liu, Y.; Huang, K. Solid State Commun. 2007,141, 12. https://doi.org/10.1016/j.ssc.2006.09.046
  7. Passlack, M.; Hunt, N. E. J.; Schubert, E. F.; Zydzik, G. J.; Hong, M.; Mannaerts, J. P.; Opila, R. L.; Fischer, R. J. Appl. Phys. Lett.1994, 64, 2715. https://doi.org/10.1063/1.111452
  8. Schwebel, T.; Fleischer, M.; Meixner, H. Sens. Actuators B 2000,65, 176. https://doi.org/10.1016/S0925-4005(99)00326-3
  9. Ogita, M.; Higo, K.; Nakanishi, Y.; Hatanaka, Y. Appl. Surf. Sci. 2001, 175, 721.
  10. Gundiah, G.; Govindarj, A.; Rao, C. N. R. Chem. Phys. Lett. 2002,351, 189. https://doi.org/10.1016/S0009-2614(01)01372-0
  11. Gao, Y. H.; Bando, Y.; Sato, T. Appl. Phys. Lett. 2002, 81, 2267. https://doi.org/10.1063/1.1507835
  12. Kim, H.; Jin, C.; Park, S.; Kim, S.; Lee, C. Sens. Actuators, B 2012, 161, 594. https://doi.org/10.1016/j.snb.2011.11.006
  13. Arnold, S. P.; Prokes, S. M.; Perkins, K.; Zaghloul, M. E. Appl. Phys. Lett. 2009, 95, 103102. https://doi.org/10.1063/1.3223617
  14. Choi, Y. J.; Hwang, I. S.; Park, J. G.; Choi, K. J.; Park, J. H.; Lee, J. H. Nanotechnol. 2008, 19, 095508. https://doi.org/10.1088/0957-4484/19/9/095508
  15. Zhang, Y.; Kolmakov, A.; Lilach, Y.; Moskovits, M. J. Phys. Chem. B 2005, 109, 1923. https://doi.org/10.1021/jp045509l
  16. Comini, E.; Cristalli, A.; Faglia, G.; Sberveglieri, G. Sens. Actuators B: Chem 2000, 65, 260. https://doi.org/10.1016/S0925-4005(99)00350-0
  17. Comini, E.; Faglia, G.; Sberveglieri, G. Sens. Actuators B: Chem. 2001, 78, 73-77. https://doi.org/10.1016/S0925-4005(01)00796-1
  18. Prades, J. D.; Diaz, R. J.; Ramirez, F. H.; Barth, S.; Cirera, A.; Rodriguez, A. R.; Mathur, S.; Morante, J. R. Sens. Actuators B: Chem. 2009, 140, 337. https://doi.org/10.1016/j.snb.2009.04.070
  19. Fan, S. W.; Srivastava, A. K.; Dravid, V. P. Appl. Phys. Lett. 2009,95, 142106. https://doi.org/10.1063/1.3243458
  20. Fan, S. W.; Srivastava, A. K.; Dravid, V. P. Sens. Actuators B: Chem. 2010, 144, 159. https://doi.org/10.1016/j.snb.2009.10.054
  21. Gong, J.; Li, Y. H.; Chai, X. S.; Hu, Z. S.; Deng, Y. L. J. Phys. Chem. C 2010, 114, 1293. https://doi.org/10.1021/jp906043k
  22. Cao, C. L.; Hu, C. G.; Wang, X.; Wang, S. X.; Tian, Y. S.; Zhang, H. L. Sens. Actuators B: Chem. 2011, 156, 114. https://doi.org/10.1016/j.snb.2011.03.080
  23. Lupana, O.; Lee, C.; Chai, G. Sens. Actuators B: Chem. 2009, 141,511. https://doi.org/10.1016/j.snb.2009.07.011
  24. Lu, G.; Xu, J.; Sun, J.; Yu, Y.; Zhang, Y.; Liu, F. Sens. Actuators B: Chem. 2012, 162, 82. https://doi.org/10.1016/j.snb.2011.12.039
  25. Williams, D. E. Solid State Gas Sensors, Bristol, Hilger 1987.
  26. Barsan, N.; Weimar, U. J. Electroceram. 2001, 7, 143. https://doi.org/10.1023/A:1014405811371
  27. Yamazoe, N. Catal. Surv. Asia 2003, 7, 63. https://doi.org/10.1023/A:1023436725457
  28. Kolmakov, A.; Klenov, D.; Lilach, Y.; Stemmer, S.; Moskovits, M. Nano Lett. 2005, 5, 667. https://doi.org/10.1021/nl050082v

Cited by

  1. Monolithic Micro Light-Emitting Diode/Metal Oxide Nanowire Gas Sensor with Microwatt-Level Power Consumption vol.5, pp.2, 2013, https://doi.org/10.1021/acssensors.9b02487