• 제목/요약/키워드: Charge Simulation Method

검색결과 244건 처리시간 0.021초

A Novel Simulation Architecture of Configurational-Bias Gibbs Ensemble Monte Carlo for the Conformation of Polyelectrolytes Partitioned in Confined Spaces

  • Chun, Myung-Suk
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.393-397
    • /
    • 2003
  • By applying a configurational-bias Gibbs ensemble Monte Carlo algorithm, priority simulation results regarding the conformation of non-dilute polyelectrolytes in solvents are obtained. Solutions of freely-jointed chains are considered, and a new method termed strandwise configurational-bias sampling is developed so as to effectively overcome a difficulty on the transfer of polymer chains. The structure factors of polyelectrolytes in the bulk as well as in the confined space are estimated with variations of the polymer charge density.

Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

  • Lee, Sang-Yun;Lee, Ensang;Kim, Khan-Hyuk;Seon, Jongho;Lee, Dong-Hun;Ryu, Kwang-Sun
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권1호
    • /
    • pp.45-50
    • /
    • 2015
  • We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

NURB곡면을 이용한 3차원 절연설계 알고리즘과 그 응용 (Three-Dimensional Insulation Design Algorithm Using NURB Surface and Its Application)

  • 이병윤;명성호;한인수;박종근;김응식;민석원;신영준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1684-1687
    • /
    • 1997
  • In this paper, a three-dimensional algorithm for the insulation design of the high-voltage equipment is presented. In general, the insulation design consists of two steps. They are electric field calculation and correction of the shape to be designed. In the proposed algorithm, the combination method of charge simulation and surface charge simulation is used to calculate the three-dimensional electric fields. As for the correction of the shape, indirect control provided by rational B-spline is more useful than direct control. The use of rational B-spline reduces in the number of design variables and garrantees the smooth curvature of the designed shape. The proposed algorithm is applied to the design of the shape of the shield ring which has been designed by the method of trial and error.

  • PDF

Damage identification of masonry arch bridge under blast loading using smoothed particle hydrodynamics (SPH) method

  • Amin Bagherzadeh Azar;Ali Sari
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.103-121
    • /
    • 2024
  • The smoothed particle hydrodynamics (SPH) method is a numerical technique used in dynamic analysis to simulate the fluid-like behavior of materials under extreme conditions, such as those encountered in explosions or high velocity impacts. In SPH, fluid or solid materials are discretized into particles. These particles interact with each other based on certain smoothing kernels, allowing the simulation of fluid flows and predict the response of solid materials to shock waves, like deformation, cracking or failure. One of the main advantages of SPH is its ability to simulate these phenomena without a fixed grid, making it particularly suitable for analyzing complex geometries. In this study, the structural damage to a masonry arch bridge subjected to blast loading was investigated. A high-fidelity micro-model was created and the explosives were modeled using the SPH approach. The Johnson-Holmquist II damage model and the Mohr-Coulomb material model were considered to evaluate the masonry and backfill properties. Consistent with the principles of the JH-II model, the authors developed a VUMAT code. The explosive charges (50 kg, 168 kg, 425 kg and 1000 kg) were placed in close proximity to the deck and pier of a bridge. The results showed that the 50 kg charges, which could have been placed near the pier by a terrorist, had only a limited effect on the piers. Instead, this charge caused a vertical displacement of the deck due to the confinement effect. Conversely, a 1000 kg TNT charge placed 100 cm above the deck caused significant damage to the bridge.

풍소음 저감용 특수 다중도체 방식의 3차원 전계해석 (3-Dimensional Analysis on Electric Field of Special Conductor Bundle for Reducing Aeolian Noise)

  • 민석원;송기현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.254-258
    • /
    • 2001
  • In this paper, 3-dimensional charge simulation method was developed to analyze electric field distributions of special conductor bundles equipped with spiral rods for reducing aeolian noise. When we applied this method to 765 kV double circuit transmission line, we found calculation error of this method was within a reasonable boundary of 1%.

  • PDF

Numerical Modeling of Nano-powder Synthesis in a Radio-Frequency Inductively Coupled Plasma Torch

  • Hur, Min Young;Lee, Donggeun;Yang, Sangsun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제27권1호
    • /
    • pp.14-18
    • /
    • 2018
  • In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.

A Numerical Study on the Triboelectrostatic Separation of PVC Materials From Mixed Plastics for Waste Plastic Recycling

  • Ha, Man-Yeong;Jeon, Chung-Hwan;Park, Doo-Seong;Park, Hae-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1485-1495
    • /
    • 2003
  • We investigate the triboelectrostatic separation of polyvinylchloride (PVC) from mixed plastics in the laboratory scale triboelectrostatic separation system. The flow and electric fields in the precipitator are obtained from the numerical solution of finite volume method. Using these flow and electric fields, we solved the particle motion equation considering the inertia, drag, gravity and electrostatic forces acted on the particles. The particle trajectories are obtained using a Lagrangian method as a function of different important variables such as Reynolds number, Stokes number, electrostatic force, electric charge and electric field distribution, inclined angle of plane electrodes, particle rebounding, particle charge decay rate after impact on the electrode surface, etc., in order to determine the optimal design conditions. The present predicted results for the cumulative yield represent well the experimental ones.

적응적 기법을 이용한 전력소 모선하의 3차원 전계분포 해석 (Three-Dimensional Electric Field Calculation around Substation Busbars Using Adaptive Technique)

  • 명성호;이병윤;박종근;민석원;김응식;이재복;하태현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1892-1894
    • /
    • 1996
  • This paper presents optimal charge arrangement through potential error analysis. In order to decide the number of charges per conductor for a large system, adaptive simulation charge arrangement technique has been proposed. "Grouping" technique which means to divide analysis domain into two groups has been described through field error analysis. By this method, the size of matrix to calculate E field at a calculation point is reduced remarkably. The proposed method is applied to the electric field calculation around the Substation busbars.

  • PDF

박막트랜지스터의 문턱전압 이동 시뮬레이션 방안 (Simulation Method of Threshold Voltage Shift in Thin-film Transistors)

  • 정태호
    • 한국전기전자재료학회논문지
    • /
    • 제26권5호
    • /
    • pp.341-346
    • /
    • 2013
  • Threshold voltage shift caused by trapping and release of charge carriers in a thin-film transistor (TFT) is implemented in AIM-SPICE tool. Turning on and off voltages are alternatively applied to a TFT to extract charge trapping and releasing process. Each process is divided into sequentially ordered processes, which are numerically modeled and implemented in a computer language. The results show a good agreement with the experimental data, which are modeled. Since the proposed method is independent of TFT's behavior models implemented in SPICE tools, it can be easily added to them.