Browse > Article
http://dx.doi.org/10.5757/ASCT.2018.27.1.14

Numerical Modeling of Nano-powder Synthesis in a Radio-Frequency Inductively Coupled Plasma Torch  

Hur, Min Young (Department of Electrical and Computer Engineering, Pusan National University)
Lee, Donggeun (School of Mechanical Engineering, Pusan National University)
Yang, Sangsun (Powder and Ceramics Division, Korea Institute of Materials Science)
Lee, Hae June (Department of Electrical and Computer Engineering, Pusan National University)
Publication Information
Applied Science and Convergence Technology / v.27, no.1, 2018 , pp. 14-18 More about this Journal
Abstract
In order to understand the mechanism of the synthesis of particles using a plasma torch, it is necessary to understand the reaction mechanisms using a computer simulation. In this study, we have developed a simulation method to combine the Lagrangian scheme to follow microparticles and a nodal method to treat nanoparticles categorized with different particle sizes. The Lagrangian scheme includes the Coulomb force which affects the dynamics of larger particles. In contrast, the nodal method is adequate for the nanoparticles because the charge effect is negligible for nanoparticles but the number of nanoparticles is much larger than that of microparticles. This method is helpful to understand the dynamics and growth mechanism of micro- and nano-powder mixture observed in the experiment.
Keywords
RF-ICP thermal plasma; Micro- and nano-powder synthesis; Lagrangian scheme; Nodal method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. H. Seo and B. G. Hong, Nucl. Eng. Technol. 44, 9 (2012).   DOI
2 M. I. Boulos, Pure Appl. Chem. 68, 1007-1010 (1996).   DOI
3 M. K. Mun, W. O. Lee, J. W. Park, D. S. Kim, G. Y. Yeom, and D. W. Kim, Appl. Sci. Converg. Technol. 26, 164-173 (2017)
4 V. Colombo, E. Ghedini, M. Gherardi, P. Sanibondi, and M. Shigeta, Plasma Sources Sci, Technol. 21, 025001 (2012).   DOI
5 A. B. Murphy, J. Phys. D: Appl. Phys. 34, R151-R173 (2001).   DOI
6 A. Gleizes, J. J. Gonzalez, and P. Freton, J. Phys. D: Appl. Phys. 38, R153-R183 (2005).   DOI
7 J. P. Trelles, J. V. R. Heberlein, and E. Pfender, J. Phys. D: Appl. Phys. 40, 5937-5952 (2007).   DOI
8 M. Hur and S. H. Hong, J. Phys. D: Appl. Phys. 35, 1946-1954 (2002).   DOI
9 M. Shigeta and T. Watanabe, J. Phys. D: Appl. Phys. 40, 2407-2419 (2007).   DOI
10 A. Prakash, A. P. Bapat, and M. R. Zachariah, Aerosol Sci. Technol. 37, 892-898 (2003).   DOI
11 M. Shigeta and T. Watanabe, J. Appl. Phys. 103, 074903 (2008).   DOI
12 A. Douglass, and V. Land, L. Matthews, T. Hyde, Phys. Plasma 18, 083706 (2011).   DOI
13 J. Grifoll and J. Rosell-Llompart, J. Aerosol Sci. 47, 78-93 (2012).   DOI
14 M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing, John Wiley & Sons (2005).
15 J. M. Park, K. S. Kim, T. H. Hwang, S. H. Hong, and IEEE T. Plasma Sci. 32, 479-487 (2004).   DOI
16 S. V. Patankar, Numerical heat transfer and fluid flow, Hemisphere (1980).
17 B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269-289 (1974).   DOI
18 M. I. Boulos, P. Fauchasis, and E. Pfender, Thermal Plasmas: Fundamentals and Applications, New York: Plenum Press (1994).
19 D.-Y. Yang, Y. Kim, M. Y. Hur, H. J. Lee, Y.-J. Kim, T.-S. Lim, K.-B. Kim, and S. Yang, Metals 5, 2058-2069 (2015).   DOI
20 K. S. Drellishak, C. F. Knopp, and A. B. Cambel, Phys. Fluids 6, 1280 (1963).   DOI
21 M. Shiratani, H. Kawasaki, T. Fukuzawa, T. Yoshioka, Y. Ueda, S. Singh, and Y. Watanabe, J. Appl. Phys. 79, 104-109 (1996).   DOI
22 R. L. Picard, A. H. Markosyan, D. H. Porter, S. L. Girshick, and M. J. Kushner, Plasma Chem. Plasma Process 36, 941-972 (2016).   DOI
23 A. K. Arumugham-Achari, J. Grifoll, J. Rosell-Llompart, and J. Aerosol Sci. 65, 121-133 (2013).   DOI
24 S.-W. Yoo, S.-J. You, J.-H. Kim, D.-J. Seong, B.-H. Seo, and N.-M. Hwang, J. Phys. D: Appl. Phys. 50, 035201 (2017).   DOI