• 제목/요약/키워드: Charge Separation

검색결과 200건 처리시간 0.024초

Evaluation of the Effective Charge Density on Low Pressure Nanofiltration with the Separation Characteristics of Monovalent and Divalent Solutes in the Production of Drinking Water

  • Oh, Jeong-Ik;Taro, Urase
    • Environmental Engineering Research
    • /
    • 제16권1호
    • /
    • pp.29-34
    • /
    • 2011
  • The electric charge on a membrane was investigated by analyzing the experimental rejection of various monovalent and divalent ionic solutes. The characteristics of the separation of ionic solutes using various nanofiltration membranes were obtained from an experimental nanofiltration set-up, with a surface area of $40cm^2$ under the operational pressures between 0.25-0.3 MPa. The state of the membrane electric charge was observed using separation coefficients, i.e., the permeation ratio of monovalent to divalent ions. To confirm the state of the membrane charge observed via the separation coefficient, a calculation using the extended Nernst-Planck equation, coupled with the Donnan equilibrium, assuming different electric charge states of the membrane, was compared with the experimental rejection of ionic solutes. The examination of the characteristics of separation using three types of nanofiltration membranes showed that one of the membranes carried a negative/positive double charge density inside, while other two membranes carried either a positive or negative charge density.

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction

  • Wojcik, Mariusz;Michalak, Przemyslaw;Tachiya, M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.795-802
    • /
    • 2012
  • Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.

Pulsed Electron Paramagnetic Resonance Application on the Photoinduced Charge Separation of Alkylphenothiazine Derivatives in Molecular Assemblies

  • Kang, Young-Soo;Park, Chan-Young
    • 한국자기공명학회논문지
    • /
    • 제4권2호
    • /
    • pp.82-90
    • /
    • 2000
  • Photoinduced charge separation of alkylphenothiazines in molecular assemblies such as positively, negatively and neutrally charged micelle interface results in the paramagnetic phenothiazine cation radical. This was studied as a model system for the light energy conversion into chemical energy. The photoproduced phenothaizne cation radical was identified and its amount was quantized with electron spin resonance (ESR). The microenvironment of photoproduced cation radical was studied with pulsed-ESR. Such a charge separation is enhanced by the optimization of various structural factors of the molecular assemblies. The structural factors of molecular assemblies have focused on the interface charge, interface structure with different headgroups and interfacial perturbation by disolving interface active organic additives.

  • PDF

고정비용 0-1 배낭문제에 대한 크바탈-고모리 부등식의 분리문제에 관한 연구 (On the Separation of the Rank-1 Chvatal-Gomory Inequalities for the Fixed-Charge 0-1 Knapsack Problem)

  • 박경철;이경식
    • 한국경영과학회지
    • /
    • 제36권2호
    • /
    • pp.43-50
    • /
    • 2011
  • We consider the separation problem of the rank-1 Chvatal-Gomory (C-G) inequalities for the 0-1 knapsack problem with the knapsack capacity defined by an additional binary variable, which we call the fixed-charge 0-1 knapsack problem. We analyze the structural properties of the optimal solutions to the separation problem and show that the separation problem can be solved in pseudo-polynomial time. By using the result, we also show that the existence of a pseudo-polynomial time algorithm for the separation problem of the rank-1 C-G inequalities of the ordinary 0-1 knapsack problem.

Artificial Photosynthesis Using Zeolites

  • Castagnola, Norma B.;Dutta, Prabir K.
    • Journal of Photoscience
    • /
    • 제6권3호
    • /
    • pp.91-96
    • /
    • 1999
  • Zeolites and microporouos materials continue to attract attention as novel hosts for photochemical reactions. Zeolities are attractive because of their ability to selectivity exchange and incorporate species within the void spaces and interconnecting channels, providing a spatial arrangement of molecules. Our research has primarily focused on intrazeolitic electron transfer from excited Ru(bpy)32+ in supercages of zeolite Y to a series of bipyridinium ions. In the Ru(bpy)32+ viologen-zeolite Y samples, the slowing of the back electron transfer from the bipyridinium radical cation to Ru(bpy)32+ allows for charge propagation via self exchange between diquat molecules. This provides an opportunity for permanent charge separation. When the migrating charge on the diquat radical within the zeolite reaches the surface, it can be transferred to a neutral viologen (PVS) in solution, resulting in permanent charge separation. The advantage of long-lived charge separation can be exploited for useful chemistry if suitable catablysts can be assembled on the zeolities. We have studied Ru(bpy)2 as water oxdiation catalysts. We have demonstrated that synthesis of RuO2 fibers on a zeolite via thermal decomposition of Ru3(CO)12 leads to the most active water decomposition catalyst reported to date. Because of the extensive interest of photochemical water reduction to H2, much is known about catalytic systems usin gone electron catalyst, and even more importantly, that no reaction of viologen occurred with H2 over this catalyst. The present challenge is to incorporate all these elements of the system into an architecture and we are examining zeolite membranes for this purpose.

  • PDF

A Numerical Study on the Triboelectrostatic Separation of PVC Materials From Mixed Plastics for Waste Plastic Recycling

  • Ha, Man-Yeong;Jeon, Chung-Hwan;Park, Doo-Seong;Park, Hae-Jin
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1485-1495
    • /
    • 2003
  • We investigate the triboelectrostatic separation of polyvinylchloride (PVC) from mixed plastics in the laboratory scale triboelectrostatic separation system. The flow and electric fields in the precipitator are obtained from the numerical solution of finite volume method. Using these flow and electric fields, we solved the particle motion equation considering the inertia, drag, gravity and electrostatic forces acted on the particles. The particle trajectories are obtained using a Lagrangian method as a function of different important variables such as Reynolds number, Stokes number, electrostatic force, electric charge and electric field distribution, inclined angle of plane electrodes, particle rebounding, particle charge decay rate after impact on the electrode surface, etc., in order to determine the optimal design conditions. The present predicted results for the cumulative yield represent well the experimental ones.

폭약 이격에 따른 강판과 콘크리트 부재의 파괴양상 연구 (A Study on Blasting Aspect of Steel Member and Concrete Member According to Separation distance of Explosives)

  • 양형식;김정규;고영훈;노유송;신명진
    • 화약ㆍ발파
    • /
    • 제32권1호
    • /
    • pp.1-9
    • /
    • 2014
  • 외부장약 발파시 부재와 폭약의 이격거리에 따른 절단 및 파괴양상을 확인하기 위하여 강 부재와 콘크리트 부재에 TNT 카트리지 폭약을 이용하여 실험을 하였다. 실험 결과 강 부재나 콘크리트 부재에 대한 파괴 장전공식은 다소 보수적인 것으로 판단되었다. 콘크리트 부재에 비해 강 부재가 폭약 이격거리에 대한 파괴영향이 큰 것으로 판단된다. 강 부재의 경우 표준폭약 이상으로 장전해도 폭약이 부재에서 2cm 이격된 경우 절단되지 않고 구부러짐만 나타났다. 같은 이격에 대하여 콘크리트 블록 부재의 경우 구조물의 파괴를 유도하는데 문제가 없을 것으로 판단된다.

폐플라스틱 정전분리를 위한 하전특성에 관한 연구 (A Study on Surface Charge Characteristics on Various Plastic Materials for Ttiboelectrostatic Separation of Plastic Wastes)

  • 김도균;조희찬;전호석
    • 자원리싸이클링
    • /
    • 제11권3호
    • /
    • pp.37-45
    • /
    • 2002
  • 마찰대전 분리는 서로 상이한 두 물체를 마찰시켜 각자 반대극성으로 하전시킨 후 전기장에 통과시켜 분리하는 기술이며, 이때자 물질의 하전극성은 work function에 의해 각기 다른 극성으로 하전된다. 본 연구에서는 마찰대전을 이용한 정전분리에 기본이 되는 각종 플라스틱의 work function을 알아보는 데 중점을 두었으며 마찰대전 후 하전량에 따른 분리 효율을 도출하여 최적의 운전조건을 위한 하전특성을 알아보았다. 플라스틱 시료는 2가지의 샘플을 가지고 실험하였으며. 이를 각기 다른 재질의 드럼형 마찰하전장치를 이용하여 대전을 시켰다. 또한 Faraday Cage를 이용하여 하전량을 측정한 후 work function을 도출하였다. 하전된 입자는 $\pm$20 kV의 전장에 통과시켜 분리실험을 수행하고 이를 통해서 하전량과 분리효율간의 상관관계를 도출하였다.

Unidirectional Photo-induced Charge Separation and Thermal Charge Recombination of Cofacially Aligned Donor-Acceptor System Probed by Ultrafast Visible-Pump/Mid-IR-Probe Spectroscopy

  • Kim, Hyeong-Mook;Park, Jaeheung;Noh, Hee Chang;Lim, Manho;Chung, Young Keun;Kang, Youn K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.587-596
    • /
    • 2014
  • A new ${\pi}$-stacked donor-acceptor (D-A) system, [Ru(1-([2,2'-bipyridine]-6-yl-methyl)-3-(2-cyclohexa-2',5'-diene-1,4-dionyl)-1H-imidazole)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (ImQ_T), has been synthesized and characterized. Similar to its precedent, [Ru(6-(2-cyclohexa-2',5'-diene-1,4-dione)-2,2':6',2"-terpyridine)(2,2':6',2"-terpyridine)]$[PF_6]_2$ (TQ_T), this system has a cofacial alignment of terpyridine (tpy) ligand and quinonyl (Q) group, which facilitates an electron transfer through ${\pi}$-stacked manifold. Despite the presence of lowest-energy charge transfer transition from the Ru-based-HOMO-to-Q-based-LUMO (MQCT) predicted by theoretical calculations by using time-dependent density functional theory (TD-DFT), the experimental steady-state absorption spectrum does not exhibit such a band. The selective excitation to the Ru-based occupied orbitals-to-tpy-based virtual orbital MLCT state was thus possible, from which charge separation (CS) reaction occurred. The photo-induced CS and thermal charge recombination (CR) reactions were probed by using ultrafast visible-pump/mid-IR-probe (TrIR) spectroscopic method. Analysis of decay kinetics of Q and $Q^-$ state CO stretching modes as well as aromatic C=C stretching mode of tpy ligand gave time constants of <1 ps for CS, 1-3 ps for CR, and 10-20 ps for vibrational cooling processes. The electron transfer pathway was revealed to be Ru-tpy-Q rather than Ru-bpy-imidazol-Q.

수치해석 기법을 이용한 정밀선상성형장약의 성능 예측에 관한 연구 (The Study on the Performance Prediction of Precision Linear Shaped Charge Using Numerical Analysis Method)

  • 이시은
    • 한국군사과학기술학회지
    • /
    • 제25권3호
    • /
    • pp.275-284
    • /
    • 2022
  • Linear Shaped Charge(LSC) is widely used as a separation system in the field of weapon system. However, there are some disadvantages that are charging lots of explosives due to lack of uniformity and having difficulties of the design of liner and explosives because of manufacturing process. In order to solve these problems, Precision Linear Shaped Charge(PLSC) that can design a liner independently and charge explosives uniformly has been developed. In this study, PLSC was designed to have a proper liner shape and amount of explosives, and the penetration test of PLSC with different stand-off distance from liner to target was conducted. On the basis of the penetration test results of PLSC, the numerical analysis method using AUTODYN was established and verified. The penetrative mechanism and characteristics of PLSC with targets of different materials was analyzed from experimental and numerical results.