DOI QR코드

DOI QR Code

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction

  • Wojcik, Mariusz (Institute of Applied Radiation Chemistry, Technical University of Lodz) ;
  • Michalak, Przemyslaw (Institute of Applied Radiation Chemistry, Technical University of Lodz) ;
  • Tachiya, M. (National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2011.09.30
  • Accepted : 2011.12.13
  • Published : 2012.03.20

Abstract

Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.

Keywords

References

  1. Westenhoff, S.; Howard, I. A.; Hodgkiss, J. M.; Kirov, K. R.; Bronstein, H. A.; Williams, C. K.; Greenham, N. C.; Friend, R. H. J. Am. Chem. Soc. 2008, 130, 13653. https://doi.org/10.1021/ja803054g
  2. Veldman, D.; Ipek, Ö.; Meskers, S. C. J.; Sweelssen, J.; Koetse, M. M.; Veenstra, S. C.; Kroon, J. M.; Van Bavel, S. S.; Loos, J.; Janssen, R. A. J. J. Am. Chem. Soc. 2008, 130, 7721. https://doi.org/10.1021/ja8012598
  3. Schubert, M.; Yin, C.; Castellani, M.; Bange, S.; Tam, T. L.; Sellinger, A.; Hörhold, H.-H.; Kietzke, T.; Neher, D. J. Chem. Phys. 2009, 130, 094703 https://doi.org/10.1063/1.3077007
  4. Smoluchowski, M. Z. Phys. Chem. 1917, 92, 129.
  5. Onsager, L. Phys. Rev. 1938, 54, 554. https://doi.org/10.1103/PhysRev.54.554
  6. Sano, H.; Tachiya, M. J. Chem. Phys. 1979, 71, 1276. https://doi.org/10.1063/1.438427
  7. See, for example, Que, W.; Rowlands, J. A. Phys. Rev. B 1995, 51, 10500. https://doi.org/10.1103/PhysRevB.51.10500
  8. Noolandi, J.; Hong, K. M. J. Chem. Phys. 1979, 70, 3230. https://doi.org/10.1063/1.437912
  9. Wojcik, M.; Tachiya, M. J. Chem. Phys. 2009, 130, 104107. https://doi.org/10.1063/1.3082005
  10. Tachiya, M. Radiat. Phys. Chem. 1983, 21, 167.
  11. Wojcik, M.; Tachiya, M. Radiat. Phys. Chem. 2005, 74, 132.
  12. Braun, C. L. J. Chem. Phys. 1984, 80, 4157. https://doi.org/10.1063/1.447243
  13. Brabec, C.; Dyakonov, V.; Scherf, U. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies; WILEY-VCH: Weinheim, 2008.
  14. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. https://doi.org/10.1021/cr050149z
  15. Peumans, P.; Forrest, S. R. Chem. Phys. Lett. 2004, 398, 27.
  16. Offermans, T.; Meskers, S. C. J.; Janssen, R. A. J. Chem. Phys. 2005, 308, 125. https://doi.org/10.1016/j.chemphys.2004.08.015
  17. Groves, C.; Marsh, R. A.; Greenham, N. C. J. Chem. Phys. 2008, 129, 114903. https://doi.org/10.1063/1.2977992
  18. Deibel, C.; Strobel, T.; Dyakonov, V. Phys. Rev. Lett. 2009, 103, 036402. https://doi.org/10.1103/PhysRevLett.103.036402
  19. Wojcik, M.; Michalak, P.; Tachiya, M. Appl. Phys. Lett. 2010, 96, 162102. https://doi.org/10.1063/1.3397992
  20. Bassler, H. Phys. Stat. Sol. (b) 1993, 175, 15. https://doi.org/10.1002/pssb.2221750102
  21. Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926. https://doi.org/10.1021/cr050140x
  22. Albrecht, U.; Bassler, H. Chem. Phys. Lett. 1995, 235, 389. https://doi.org/10.1016/0009-2614(95)00121-J
  23. Tachiya, M.; Seki, K. Phys. Rev. B 2010, 82, 085201. https://doi.org/10.1103/PhysRevB.82.085201
  24. Prins, P.; Grozema, F. C.; Siebbeles, L. D. A. J. Phys. Chem. B 2006, 110, 14659. https://doi.org/10.1021/jp0626115
  25. Asaoka, S.; Takeda, N.; Iyoda, T.; Cook, A. R.; Miller, J. R. J. Am. Chem. Soc. 2008, 130, 11912. https://doi.org/10.1021/ja800426z
  26. Lan, Y.-K.; Yang, C. H.; Yang, H.-C. Polym. Int. 2010, 59, 16. https://doi.org/10.1002/pi.2683
  27. Warman, J. M.; de Haas, M. P.; van der Pol, J. F.; Drenth, W. Chem. Phys. Lett. 1989, 164, 581. https://doi.org/10.1016/0009-2614(89)85262-5
  28. Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141. https://doi.org/10.1038/371141a0
  29. Warman, J. M.; van de Craats, A. M. Mol. Cryst. Liq. Cryst. 2003, 396, 41. https://doi.org/10.1080/15421400390213186

Cited by

  1. Analysis of Charge Transport and Device Performance in Organic Photovoltaic Devices with Active Layers of Self-Assembled Nanospheres vol.119, pp.46, 2015, https://doi.org/10.1021/acs.jpcc.5b09421
  2. Geminate electron-hole recombination in organic photovoltaic cells. A semi-empirical theory vol.146, pp.5, 2017, https://doi.org/10.1063/1.4974812
  3. The Role of Mobility on Charge Generation, Recombination, and Extraction in Polymer-Based Solar Cells vol.8, pp.28, 2018, https://doi.org/10.1002/aenm.201703355
  4. Energy-Gap Law for Photocurrent Generation in Fullerene-Based Organic Solar Cells: The Case of Low-Donor-Content Blends vol.141, pp.6, 2012, https://doi.org/10.1021/jacs.8b09820
  5. Translating local binding energy to a device effective one vol.4, pp.2, 2012, https://doi.org/10.1039/c9se01095e
  6. A History and Perspective of Non‐Fullerene Electron Acceptors for Organic Solar Cells vol.11, pp.15, 2012, https://doi.org/10.1002/aenm.202003570