Artificial Photosynthesis Using Zeolites

  • Castagnola, Norma B. (Department of Chemistry, The Ohio State University) ;
  • Dutta, Prabir K. (Department of Chemistry, The Ohio State University)
  • Published : 1999.05.01

Abstract

Zeolites and microporouos materials continue to attract attention as novel hosts for photochemical reactions. Zeolities are attractive because of their ability to selectivity exchange and incorporate species within the void spaces and interconnecting channels, providing a spatial arrangement of molecules. Our research has primarily focused on intrazeolitic electron transfer from excited Ru(bpy)32+ in supercages of zeolite Y to a series of bipyridinium ions. In the Ru(bpy)32+ viologen-zeolite Y samples, the slowing of the back electron transfer from the bipyridinium radical cation to Ru(bpy)32+ allows for charge propagation via self exchange between diquat molecules. This provides an opportunity for permanent charge separation. When the migrating charge on the diquat radical within the zeolite reaches the surface, it can be transferred to a neutral viologen (PVS) in solution, resulting in permanent charge separation. The advantage of long-lived charge separation can be exploited for useful chemistry if suitable catablysts can be assembled on the zeolities. We have studied Ru(bpy)2 as water oxdiation catalysts. We have demonstrated that synthesis of RuO2 fibers on a zeolite via thermal decomposition of Ru3(CO)12 leads to the most active water decomposition catalyst reported to date. Because of the extensive interest of photochemical water reduction to H2, much is known about catalytic systems usin gone electron catalyst, and even more importantly, that no reaction of viologen occurred with H2 over this catalyst. The present challenge is to incorporate all these elements of the system into an architecture and we are examining zeolite membranes for this purpose.

Keywords

References

  1. Photosynthesis: Molecular, Physiological and Environmental Processes($2^{nd}$ ed.) Lawlor, D.W.
  2. Energy Conversion by Plants and Bacteria Govindjee, E.
  3. Photocatalysis: Fundamentals and Applications Parmon, V.N.;K.I. Zamarev;N. Serponc(Ed.);E. Pelizzetti(Ed.)
  4. Photochemistry in Microheterogeneous Systems Kalyanasundaram, K.
  5. Energy Resources Through Photochemistry and Catalysis M. Gratzel(Ed)
  6. Photochemistry in Organized and Constrained Media Ramamurthy, V.
  7. Zeolite molecular Sieves Breck, D.W.
  8. Handbook of Molecular Sieves Szostak, R.
  9. J. Am. Chem. Soc. v.96 Bock, C. R.;T. J. Meyer;D. G. Whitten
  10. Phys. Chem. v.91 Olmsted Ⅲ, J.;T. J. Meyer
  11. Coord. Chem. Rev. v.46 Kalyanasundaram, K.
  12. J. Phys. Chem. v.84 De Wildc, W.;G. Peeters;J. H. Lunsford
  13. J. Phys. Chem. B v.103 Vitale, M.;N. Castagnola;N. Ortins;J. Brooke;A. Vaidyalingam;P. Dutta
  14. Nature v.362 Borja, M.;P. K. Dutta
  15. Nature v.387 Sykora, M.;J. R. Kincaid
  16. J. Phys. Chem. B v.102 Castagnola, N.;P. Dutta
  17. Nouv. J. Chim. v.4 Lehn, J-M.;J-P. Sauvage;R. Ziessel
  18. Microporous Mesoporous Mater. v.22 Das, S. K.;P. K. Dutta
  19. Nouv. J. Chim. v.5 Lehn, J-M.;J-P. Sauvage;R. Ziessel
  20. J. Photochem. v.29 Amouyal, E.;P. Koffi
  21. J. Chem. Soc., Faraday Trans. v.1 no.78 Keller, P.;A. Moradpour;E. Amouyal
  22. J. Chem. Soc., Chem. Commun. Amouyal, E.;P. Deller;A. Moradpour
  23. Chem. Mater. v.8 Bein, T.
  24. J. Mater. Chem. v.2 Anderson, M. W.;K. S. Pachis;J. Shi;S. W. Carr
  25. J. Am. Chem. Soc. v.116 Yonemoto, E. H.;Y. I. Kim;R. H. Schmehl;J. O. Wallin;B. A. Shoulders;B. R. Richardson;J. F. Haw;T. E. Mallouk
  26. J. Am. Chem. Soc. v.110 Cooley, L. F.;C. E. Headford, L.;C. M.Elliott;D. F. Kelley