Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.3.795

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction  

Wojcik, Mariusz (Institute of Applied Radiation Chemistry, Technical University of Lodz)
Michalak, Przemyslaw (Institute of Applied Radiation Chemistry, Technical University of Lodz)
Tachiya, M. (National Institute of Advanced Industrial Science and Technology (AIST))
Publication Information
Abstract
Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.
Keywords
Organic solar cells; Photogeneration; Charge carriers; Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Deibel, C.; Strobel, T.; Dyakonov, V. Phys. Rev. Lett. 2009, 103, 036402.   DOI
2 Wojcik, M.; Michalak, P.; Tachiya, M. Appl. Phys. Lett. 2010, 96, 162102.   DOI
3 Bassler, H. Phys. Stat. Sol. (b) 1993, 175, 15.   DOI   ScienceOn
4 Coropceanu, V.; Cornil, J.; da Silva Filho, D. A.; Olivier, Y.; Silbey, R.; Bredas, J.-L. Chem. Rev. 2007, 107, 926.   DOI   ScienceOn
5 Albrecht, U.; Bassler, H. Chem. Phys. Lett. 1995, 235, 389.   DOI
6 Tachiya, M.; Seki, K. Phys. Rev. B 2010, 82, 085201.   DOI
7 Prins, P.; Grozema, F. C.; Siebbeles, L. D. A. J. Phys. Chem. B 2006, 110, 14659.   DOI
8 Asaoka, S.; Takeda, N.; Iyoda, T.; Cook, A. R.; Miller, J. R. J. Am. Chem. Soc. 2008, 130, 11912.   DOI
9 Lan, Y.-K.; Yang, C. H.; Yang, H.-C. Polym. Int. 2010, 59, 16.   DOI
10 Warman, J. M.; de Haas, M. P.; van der Pol, J. F.; Drenth, W. Chem. Phys. Lett. 1989, 164, 581.   DOI
11 Adam, D.; Schuhmacher, P.; Simmerer, J.; Haussling, L.; Siemensmeyer, K.; Etzbach, K. H.; Ringsdorf, H.; Haarer, D. Nature 1994, 371, 141.   DOI
12 Warman, J. M.; van de Craats, A. M. Mol. Cryst. Liq. Cryst. 2003, 396, 41.   DOI
13 Westenhoff, S.; Howard, I. A.; Hodgkiss, J. M.; Kirov, K. R.; Bronstein, H. A.; Williams, C. K.; Greenham, N. C.; Friend, R. H. J. Am. Chem. Soc. 2008, 130, 13653.   DOI
14 Veldman, D.; Ipek, Ö.; Meskers, S. C. J.; Sweelssen, J.; Koetse, M. M.; Veenstra, S. C.; Kroon, J. M.; Van Bavel, S. S.; Loos, J.; Janssen, R. A. J. J. Am. Chem. Soc. 2008, 130, 7721.   DOI
15 Sano, H.; Tachiya, M. J. Chem. Phys. 1979, 71, 1276.   DOI
16 Schubert, M.; Yin, C.; Castellani, M.; Bange, S.; Tam, T. L.; Sellinger, A.; Hörhold, H.-H.; Kietzke, T.; Neher, D. J. Chem. Phys. 2009, 130, 094703   DOI
17 Smoluchowski, M. Z. Phys. Chem. 1917, 92, 129.
18 Onsager, L. Phys. Rev. 1938, 54, 554.   DOI
19 See, for example, Que, W.; Rowlands, J. A. Phys. Rev. B 1995, 51, 10500.   DOI
20 Noolandi, J.; Hong, K. M. J. Chem. Phys. 1979, 70, 3230.   DOI
21 Wojcik, M.; Tachiya, M. J. Chem. Phys. 2009, 130, 104107.   DOI
22 Tachiya, M. Radiat. Phys. Chem. 1983, 21, 167.
23 Wojcik, M.; Tachiya, M. Radiat. Phys. Chem. 2005, 74, 132.
24 Braun, C. L. J. Chem. Phys. 1984, 80, 4157.   DOI
25 Brabec, C.; Dyakonov, V.; Scherf, U. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies; WILEY-VCH: Weinheim, 2008.
26 Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.   DOI
27 Peumans, P.; Forrest, S. R. Chem. Phys. Lett. 2004, 398, 27.
28 Offermans, T.; Meskers, S. C. J.; Janssen, R. A. J. Chem. Phys. 2005, 308, 125.   DOI
29 Groves, C.; Marsh, R. A.; Greenham, N. C. J. Chem. Phys. 2008, 129, 114903.   DOI