• Title/Summary/Keyword: Chaotic system

Search Result 388, Processing Time 0.026 seconds

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

On the Chaotic Vibrations of Thin Beams by a Bifurcation Mode (분기 모우드를 활용한 얇은 빔의 혼돈 역학에 관한 연구)

  • 이영섭;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.121-128
    • /
    • 1995
  • The results are summarized as what follows: 1) The modeling of thin beams, which is a continuous system, into a two DOF system yields satisfactory results for the chaotic vibrations. 2) The concept of "natural forcing function" derived from the eigenfunction of the bifurcation mode is very useful for the natural responses of the system. 3) Among the perturbation techniques, HBM is a good estimate for the response when the geometry of motion is known. 4) It is known that there exist periodic solutions of coupled mode response for somewhat large damping and forcing amplitude, as well as weak damping and forcing. 5) The route-to-chaos related with lateral instability in thin beams is composed of period-doubling and quasiperiodic process and finally follows discontinuous period-doubling process. 6) The chaotic vibrations are verified by using Poincare maps, FFT's, time responses, trajectories in the configuration space, and the very powerful technique Lyapunov characteristics exponents.exponents.

  • PDF

Noise Effect in a Nonlinear System Under Harmonic Excitation (불규칙한 외부 교란이 주기적 가진을 받는 비선형계의 동적 특성에 미치는 영향)

  • 박시형;김지환
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.408-419
    • /
    • 1998
  • Dynamic characteristics are investigated when a nonlinear system showing periodic and chaotic responses under harmonic excitation is exposed to random perturbation. Approach for both qulitative and quantitative analysis of the noise effect in a nonlinear system under harmonic excitation is presented. For the qualitative analysis, Lyapunov exponents are calculated and Poincar map is illustrated. For the quatitative analysis. Fokker-Planck equatin is solved numerical by means of a Path-integral solution procedure. Eigenvalue problem obtained from the numerical caculation is solved and the relation of eigenvalue, eigenvector and chaotic motion is investigated.

  • PDF

A Study on the Flow Characteristics of Emulsified Fuel by the Ultrasonic Energy in Tube (초음파 에너지로 제조한 유화연료의 관로 흐름 특성에 관한 연구)

  • Koh, Kyounghan;Lee, Seungjin;Lee, Byongo;Ryu, Jeongin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1248-1256
    • /
    • 2005
  • This study was undertaken to investigate the flow characteristics of emulsified fuel with the ultrasonic energy-adding system by using the chaotic method. Efffcts of water contents within emulsified fuel, flow rate and tube length with 5m in diameter from an emulsified chamber has been discussed on the strange attractor and power spectral density function. Five probe sensors were set up from 0.5 to 2.5m by length in 0.5m increments in the tube. In particular, the chaotic features of this system have been practically characterized in terms of chaotic statistics such as the power spectral density function and phase space portraits by resorting to the somewhat noble deterministic chaos theory. In the tube, the dominant frequency increased with increasing water contents and flow rate, but decreased a little with an increase in the length from the emulsified chamber.

A Stream Ciphering Method using a Chaotic System

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.433-436
    • /
    • 2010
  • In this paper, we presented a ciphering method whose target data is any kind of digital bit-stream. It uses a chaotic system as the main encrypting tool, MISR (Multi-Input Signature Register), and shift-and-rotation function, all of which are exclusive-ORed with the plaintext. Also, it incorporates a cipher text feedback mode such that part of the previously ciphered data is fed back to encrypt the current data. The encryption block size and the amount of feedback data are different at each ciphering operation. Experimental results with the image/video date showed that this method has enough speed and encryption effect with negligible latency time. Thus, we are expecting it to have various application areas that need high speed stream ciphering with high security level.

Computations of the Lyapunov exponents from time series

  • Kim, Dong-Seok;Park, Eun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.595-604
    • /
    • 2012
  • In this article, we consider chaotic behavior happened in nonsmooth dynamical systems. To quantify such a behavior, a computation of Lyapunov exponents for chaotic orbits of a given nonsmooth dynamical system is focused. The Lyapunov exponent is a very important concept in chaotic theory, because this quantity measures the sensitive dependence on initial conditions in dynamical systems. Therefore, Lyapunov exponents can decide whether an orbit is chaos or not. To measure the sensitive dependence on initial conditions for nonsmooth dynamical systems, the calculation of Lyapunov exponent plays a key role, but in a theoretical point of view or based on the definition of Lyapunov exponents, Lyapunov exponents of nonsmooth orbit could not be calculated easily, because the Jacobian derivative at some point in the orbit may not exists. We use an algorithmic calculation method for computing Lyapunov exponents using time series for a two dimensional piecewise smooth dynamic system.

The Design of Stable Fuzzy Controller for Chaotic Nonlinear Systems (혼돈 비선형 시스템을 위한 안정된 퍼지 제어기의 설계)

  • 최종태;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.429-432
    • /
    • 1998
  • This paper is to design stable fuzzy controller so as to control chaotic nonlinear systems effectively via fuzzy control system and Parallel Distributed Compensation (PDC) design. To design fuzzy control system, nonlinear systems are represented by Takagi-sugeno(TS) fuzzy models. The PDC is employed to design fuzzy controllers from the TS fuzzy models. The stability analysis and control design problems is to find a common Lyapunov function for a set of linear matrix inequalitys(LMIs). The designed fuzzy controller is applied to Rossler system. The simulation results show the effectiveness of our controller.

  • PDF

Improved Single Feistel Circuit Supporter by A Chaotic Genetic Operator

  • JarJar, Abdellatif
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.165-174
    • /
    • 2020
  • This document outlines a new color image encryption technology development. After splitting the original image into 240-bit blocks and modifying the first block by an initialization vector, an improved Feistel circuit is applied, sponsored by a genetic crossover operator and then strong chaining between the encrypted block and the next clear block is attached to set up the confusion-diffusion and heighten the avalanche effect, which protects the system from any known attack. Simulations carried out on a large database of color images of different sizes and formats prove the robustness of such a system.

DISTRIBUTIONAL CHAOS AND DISTRIBUTIONAL CHAOS IN A SEQUENCE OCCURRING ON A SUBSET OF THE ONE-SIDED SYMBOLIC SYSTEM

  • Tang, Yanjie;Yin, Jiandong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.95-108
    • /
    • 2020
  • The aim of this paper is to show that for the one-sided symbolic system, there exist an uncountable distributively chaotic set contained in the set of irregularly recurrent points and an uncountable distributively chaotic set in a sequence contained in the set of proper positive upper Banach density recurrent points.

Analysis of information encoding in a chaotic neural network (카오스 신경회로망에서의 정보의 인코딩 해석)

  • 여진경
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.06a
    • /
    • pp.367-371
    • /
    • 2002
  • I construct a chaotically driven contraction system having some analogy with the information transfer mechanism in the brain system especially from CA1 cell to CA3 cell known from the empirical result. And I consider the properties of the response system on a state space according to the external input into the drive neuron by observing the fractal hierarchical structure. Then I induce the relation between the information about state transition of the chaotic time series and the spatial information on a fractal attractor to confirm the possibility of encoding of time series data to spatial information.

  • PDF