
Journal of the Korean Data & http://dx.doi.org/10.7465/jkdi.2012.23.3.595
Information Science Society 한국데이터정보과학회지
2012, 23(3), 595–604

Computations of the Lyapunov exponents
from time series

Dongseok Kim1 · Eunyoung Park2

1Department of Mathematics, Kyonggi University
2Department of Mathematics, Kyungpook National University

Received 4 April 2012, revised 8 May 2012, accepted 14 May 2012

Abstract

In this article, we consider chaotic behavior happened in nonsmooth dynamical
systems. To quantify such a behavior, a computation of Lyapunov exponents for chaotic
orbits of a given nonsmooth dynamical system is focused. The Lyapunov exponent is a
very important concept in chaotic theory, because this quantity measures the sensitive
dependence on initial conditions in dynamical systems. Therefore, Lyapunov exponents
can decide whether an orbit is chaos or not. To measure the sensitive dependence
on initial conditions for nonsmooth dynamical systems, the calculation of Lyapunov
exponent plays a key role, but in a theoretical point of view or based on the definition of
Lyapunov exponents, Lyapunov exponents of nonsmooth orbit could not be calculated
easily, because the Jacobian derivative at some point in the orbit may not exists. We
use an algorithmic calculation method for computing Lyapunov exponents using time
series for a two dimensional piecewise smooth dynamic system.
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1. Introduction

Ever since an early pioneer work of Henri Poincaré on dynamic and chaos theory, the
chaotic behavior has been studied in many different areas, the dynamics of weather (Ray-
mond, 1997), satellites in the solar system, the magnetic field of celestial bodies, population
growth in ecology, neurons potential, and molecular vibrations, etc, and also in a variety of
systems including electrical circuits, lasers, chemical reactions, fluid dynamics, and mechan-
ical and magneto-mechanical devices (Apostolos and Periklis, 2000; Apostolos and Periklis,
1999; Apostolos and Periklis, 1997) etc. The analysis of chaotic behavior, using nonlinear
differential equations and maps, was carried out by many mathematician including Henri
Poincaré, G.D. Birkhoff, A.N. Kolmogorov, M.L. Cartwright, J.E. Littlewood, and Stephen
Smale (Robert, 1977).

As mentioned in abstract, the Lyapunov exponent plays a key role in smooth dynam-
ical systems and the Lyapunov exponents can be found in almost all dynamical systems
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except simply dynamical systems with unchangeable Jacobian derivative, because Jacobian
derivative at each time should be considered in the process of calculation. For instance,
the analytical values of Lyapunov exponents for the Hénon map and Lorenz equations as
prototype models in typical dynamical systems.

A typical nonsmooth dynamical system is a piecewise smooth dynamic system. We con-
sider a class of two-dimensional piecewise smooth systems with one border and two smooth
regions, denoted by S0 and S1 , respectively. The systems are introduced as the normal form
for border collision bifurcations (Nusse and Yorke, 1992; Do and Baek, 2006; Do, 2007) and
can be expressed in terms of two affine subsystems, f0 and f1, as follows:

Xn+1 = F (Xn) =

{
f0(Xn), if Xn ∈ S0,
f1(Xn), if Xn ∈ S1,

(1.1)

where

Xn = (xn, yn) ∈ R2,

S0 = {(x, y) ∈ R2 : x ≤ 0, y ∈ R},
S1 = {(x, y) ∈ R2 : x ≥ 0, y ∈ R}.

More precisely we take

f0(Xn) =

[
a 1
b 0

] [
xn
yn

]
+

[
µ
0

]
, (1.2)

f1(Xn) =

[
c 1
d 0

] [
xn
yn

]
+

[
µ
0

]
. (1.3)

Here, a is the trace and b is the determinant of the Jacobian matrix M0 of the system at a
fixed point in S0, and c is the trace and d is the determinant of the Jacobian matrix M1 of
the system evaluated at a fixed point in S1, where

M0 =

[
a 1
b 0

]
and M1 =

[
c 1
d 0

]
.

We use an algorithmic calculation method for computing Lyapunov exponents using time
series to demonstrate the effectiveness of algorithmic calculation method in these two-
dimensional piecewise smooth systems with one border and two smooth regions. These
calculation method can be used in several real world model (Park et al., 2011; Jang and Joo,
2009; Kim et al., 2009; Choi, 2010).

The outline of this paper is as follows. In Section 2, we review the Lyapunov exponents,
piecewise smooth systems, time series analysis including a reconstructed embedding space
and an algorithmic calculation method for computing Lyapunov exponents using a time
series. In Section 3 we present the numerical results of computing Lyapunov exponents of a
nonsmooth orbit. A brief conclusion is presented in Section 4.

2. Preliminaries

In this section, we review the Lyapunov exponents, piecewise smooth systems and time se-
ries analysis including a reconstructed embedding space. An important attractor in dynamic
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systems is a chaotic attractor which is aperiodic, long-term behavior of a bounded, deter-
ministic system that exhibits sensitive dependence on initial conditions (Robert, 1977; Mario
et al., 2007). It is relatively easy to construct a deterministic system which is bounded and
aperiodic trajectories which do not settle down to fixed points, periodic orbits or quasiperi-
odic orbits, at least for time-scales for which numerical computations are feasible. It is more
difficult to construct a sensitive dependence on initial conditions which means the nearby
trajectories separate exponentially fast. For that reason, we must measure the sensitivity.
We concentrate on the properties of the Lyapunov exponent, whose sign signifies chaos and
whose value measures how much chaotic.

2.1. The Lyapunov exponent

To review, we first start from several kinds of attractors. Let x be a point in Rn and let
f be a map on Rn. The orbit of x under f is the set of points {x, f(x), f2(x), . . .}. The
starting point x for an orbit is called the initial value of the orbit. A point p is a fixed point
of the map f if f(p) = p. We call p a periodic point with a period k if fk(p) = p and k
is the smallest positive integer. An orbit {x1, x2, x3, ...} is called asymptotically periodic if
it converges to a periodic orbit as n → ∞. The Jacobian matrix Df(p) of f at p, denoted
Df(p), is the matrix of partial derivatives evaluated at p. If there exists a periodic orbit
{p1, ..., pk} of a period k, the eigenvalues of the n× n Jacobian matrix evaluated at p1, Df
k(p1), will determine the stability of period-k orbit. Using the chain rule,

Df k(p1) = Df(pk) ·Df(pk−1) · . . . ·Df(p1).

Let Jn = Df n(v0), and for k = 1, ...,m, let rnk be the length of the k-th longest orthogonal
axis of the ellipsoid JnB for an orbit with an initial point v0 where B is the unit ball in
Rn. Then rnk measures the contraction or expansion near the orbit of v0 during the first n
iterations. The kth Lyapunov number of v0 is

Lk = lim
n→∞

(rnk )
1
n ,

if the limit exists. The k-th Lyapunov exponent for v0 is λk = lnLk. If the maximal Lyapunov
exponent λ1 > 0, then the system is chaotic and unstable. If λ1 < 0, then the system
attracts to a fixed point or stable periodic orbit. If λ1 = 0, then the system is neutrally
stable(conservative and in a steady state mode). Let us remind that the orbit is chaotic if
it is not asymptotically periodic, no Lyapunov exponent is exactly zero, and λ1(v0) > 0. A
bounded dynamical system with a positive Lyapunov exponent is chaotic, and the Lyapunov
exponent describes the average rate at which predictability is lost.

2.2. Two-dimensional piecewise smooth systems

We consider a class of two-dimensional piecewise smooth systems with one border and two
smooth regions which is given the equation (1.1) in the introduction.

If we consider a bounded trajectory generated by a piecewise smooth map specially having
border condition, we may ask whether trajectory showing a complicated behavior is chaos
or not. For instance, if we consider a trajectory starting or staying at the border line, then
generally we could not get a Jacobian information at that point, because a differentiability
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Figure 2.1 A trajectory of a piecewise smooth system, Equation (1.1), with parameters
a = −0.8, b = −1, c = 0.8, d = −0.2, µ = −1, and the initial condition X0 = (0, 0.79)

at the border is not supported. In Figure 2.1 shows a trajectory with an initial condition
X0 = (0, 079) and their behavior shown in the inset figure is very complicated. To consider
the sensitivity of this trajectory, we may ask what is the Lyapunov exponents of this orbit.
But, we could not calculate this quantity, because we could not compute the Jacobian at
the initial point. To address this question, in subsection 2.3, we consider a computational
technique of Lyapunov exponents using time series.

2.3. Time series

A time series X is a sequence of data points, measured typically at successive times
spaced at uniform time intervals. That is, X = (x1, x2, x3, ...) where xi ∈ R. An one-to-
one continuous function from a compact set K to Rn is called an embedding of the set, or
sometimes a topological embedding of K. For given a time series X = (x1, x2, x3, ...) and
positive integer T , the n-dimensional delay coordinates are defined by

(xi, xi+T , xi+2T , · · · , xi+(n−1)T )

for each i ∈ Z. In the case, n is called the embedding dimension and T is called a delay time.
We will say that a property of smooth functions is generic if the set of functions with the
property is dense.

Theorem 2.1 (Sprott, 1975) Assume that A is a d-dimensional manifold in Rk. If m > 2d
and F : Rk → Rm is generic, then F is one-to-one on A.

Theorem 2.1 is one of the conclusions of the Whitney Embedding Theorem. The statement
requires that the coordinates of F are independent. Later, it was shown by Takens that it
is sufficient to choose F from the special class of functions.
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Theorem 2.2 (Sprott, 1975) Assume that A is a d-dimensional submanifold of Rk which is
invariant under the dynamical system g. If m > 2d and F : Rk → Rm is a delay coordinate
reconstruction function with a generic measurement function h and generic time delay T ,
then F is one-to-one on A.

Theorem 2.2 tells us that if the attractor dimension is the integer d, then for generic delay
plots, embedding dimension is at most 2d+ 1.

2.4. An algorithm of calculating Lyapunov exponent from time series

Suppose we have a time series x1, x2, . . . , xN . To compute Lyapunov exponent for a given
time series, first we fix an embedding dimension dE and a delay time T . Now we use the
algorithm (Edward et al., 1979) which is given the following step by step description.

Step 1. Reconstructing the dynamics in a finite dimensional space.
We choose an embedding dimension dE and construct a dE -dimensional orbit representing

the time evolution of the system by the time-delay method. We define

−→xi = (xi, xi+1, · · · , xi+dE−1) (2.1)

for i = 1, 2, · · · , N − dE + 1. In view of step 2, we have to determine the neighbors of −→x i,
i.e, the points −→x j of the orbit which are contained in a ball of suitable radius r centered at
−→x i,

||−→x j −−→x i|| ≤ r (2.2)

with
||−→x j −−→x i|| = max

0≤α≤dE−1
{|xj+α − xi+α|}. (2.3)

The use of (2.3) rather than the Euclidean norm allows a fast search for the −→x j which
satisfies (2.2), We first sort the xi so that xΠ(1) ≤ xΠ(2) ≤ · · · ≤ xΠ(N) and store the
permutation Π and its inverse Π−1. Then, to find the neighbors of xi in dimension 1, we
look at k = Π−1(i) and scan the xΠ(s) for s = k + 1, k + 2, . . . until xΠ(s) − xi > r, and
similarly for s = k − 1, k − 2, . . .

For an embedding dimension dE > 1, we first select the values of s for which |xΠ(s)−xi| ≤ r,
as above, and then impose the further conditions

|xΠ(s)+α − xi+α| ≤ r,

for α = 1, 2, . . . , dE − 1.

Step 2. Obtaining the tangent maps to this reconstructed dynamics by a least-squares
fit.

We want to determine the dE × dE matrix Ti which describes how the time evolution
sends small vectors around −→x i to small vectors around −→x i+1. The matrix Ti is obtained by
looking for neighbors −→x j of −→x i and imposing

Ti(
−→x j −−→x i) ≈ −→x j+1 −−→x i+1. (2.4)

Therefore, the matrix Ti may only be partially determined. This indeterminancy does not
spoil the calculation of the positive Lyapunov exponents, but is nevertheless a nuisance
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because it introduces parasitic exponents which confuse the analysis, in particular with
respect to zero or negative exponents which otherwise might be recoverable from the data.
The way out of this difficulty is to allow Ti to be a dM ×dM matrix with a matrix dimension
dM ≤ dE , corresponding to the time evolution from −→x i to −→x i+M .

Specifically, we assume that there is an integer M ≥ 1 such that

dE = (dM − 1)M + 1, (2.5)

and associate with −→x i a dM -dimensional vector

xi = (xi, xi+m, · · · , xi+(dM−1)M ) = (xi, xi+m, · · · , xi+dE−1), (2.6)

in which some of the intermediate components of (2.1) have been dropped. When M > 1
we replace (2.4) by the condition

Ti(xj − xi) ≈ xj+M − xi+M . (2.7)

Taking M > 1 does not mean that we delete points from the data file, i.e., all points are
acceptable as xj , and the distance measurements are still based on dE , not on dM . Note
that, in view of (2.6) and (2.7), the matrix Ti has the form

Ti =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
a1 a2 a3 · · · adm

 .

If we define by SEi (r) the set of indices j of neighbors −→x j of −→x i within distance r, as
determined by (2.2), then we obtain the ak by a least-squares fit

∑
j∈SE

i (r)

[
dM−1∑
k=0

ak+1(xj+km − xi+km)− (xj+dMm − xi+dMm)

]2

= minimum. (2.8)

The least-squares fit is the most time-consuming part of our algorithm when SEi (r) is large.
We limit ourselves therefore typically to the first 30 − 45 neighbors of the a point. We use
the least-squares algorithm by Householder. This algorithm may fail for several reasons, the
most prominent being that card SEi (r) < dM . We therefore choose r sufficiently large so
that SEi (r) contains at least dM elements.

In fact, we make a new choice of r = ri for every i. This choice is a compromise between
two conflicting requirements: take r sufficiently small so that the effect of nonlinearities can
be neglected, take r sufficiently large so that there are at least dM neighbors of −→x i, and in
fact somewhat more than dM to improve statistical accuracy.

We have selected r as follows. Count the number of neighbors of xi corresponding to
increasing values of r from a preselected sequence of possible values, and stop when the
number of neighbors exceeds for the first time min(2dM , dM + 4). If with this choice the
matrix Ti is singular, or, more generally, does not have a previously fixed minimal rank,
we again increase ri. It should be noted that this last criterion only seems to come into
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operation for time series obtained for low-dimensional computer experiments (such as maps
of the interval). We stress that the singularity of Ti in itself is not catastrophic for the
algorithm and the first p positive Lyapunov exponents are not affected provided the rank
of the Ti is at least p (which may be a lot less than dM ). One should thus not stop the
calculation, when the map is singular, since information about the expanding directions(s)
will be lost.

Step 3. Deducing the Lyapunov exponents from the tangent maps.
The step 2 gives a sequence of matrices Ti, Ti+M , Ti+2M , · · · . One determines successively

orthogonal matrices Q(j) and upper triangular matrices rj with positive diagonal elements
such that Q(0) is the unit matrix and

T1Q(0) = Q(1)R(1),
T1+MQ(1) = Q(2)R(2),

· · · ,
T1+jmQ(j) = Q(j+1)R(j+1),

· · · .

(2.9)

This decomposition is unique except in the case of zero diagonal elements. Then the
Lyapunov exponents λk are given by

λk =
1

τk

K−1∑
j=0

lnR(j)kk, (2.10)

where K ≤ (N− dMM − 1)/m is the available number of matrices, and τ is sampling time
step. Obviously, fewer matrices can be taken to shorten the computing time.

3. Results

In this section we consider the orbit generated by the nonsmooth linear system given in the
introduction. To investigate their dynamics, we will try to compute Lyapunov exponents of
nonsmooth orbits. To do it, we consider a time series constituted with one of components of
the orbit, reconstruct their dynamics in the embedding space and then using the algorithm
shown Section 2.4, calculate the Lyapunov exponents of nonsmooth orbits.

Figure 3.1 shows the time series plot vs. iteration, which is the x-component of the orbit
shown in Figure 2.1. As shown in Figure 3.1, the distance between pick to pick of time series
plot is almost the delay time T = 4. Thus, we may choose the delay time as this value and
then using the chosen this delay value, we embedded a reconstructed attractor in R5 and
their projection’s figure is shown in Figure 3.2. This figure is much similar to the Figure
2.1. Finally, we calculate the Lyapunov exponents of this time series based on the algorithm
shown in Section 2.2. The maximal value of Lyapunov exponents is positive for several delay
times as shown in Figure 3.3. It means that the nonsmooth orbit shown in Figure 2.1 may
be considered as a chaotic orbit.

For a periodic orbit generated by a nonsmooth dynamical system, we consider calculation
of Lyapunov exponents from its time series. To do it, our considering parameter setting is
that a = 0.96, b = −1.0, c = 0.86, d = 0.85 and µ = −1.0. In this parameter setting, a major
attractor is periodic orbit.
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Figure 3.1 Time series formed by x coordinate. The trajectory shown in
Figure 2.1 is plotted as an iteration i
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Figure 3.2 Reconstructed attractor of a time series formed by x coordinate
of the trajectory shown in Figure 3.1 with a delay time T = 4
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Figure 3.3 Computation of Lyapunov exponents for different delay time T from Equation (1.1), with
parameters a = −0.8, b = −1, c = 0.8, d = −0.2, µ = −1, and the initial condition X0 = (0, 0.79).

The solid lines from the top indicate the maximal Lyapunov exponent λ1, λ2, λ3, λ4, and λ5 in order
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Figure 3.4 shows the periodic attractor and its delay plot with a delay time T = 15 in
order to compare attractor’s shape. Using the time series generated by the periodic orbit,
the computation of lyapunov exponents is shown in Figure 3.5 and we can see that Lyapunov
exponents in the response of the delay time can converges to zero.

Figure 3.4 Figure (a) shows the periodic orbit generated by nonsmooth system and
Figure (b) for reconstructed attractor of a time series formed by x coordinate of the

trajectory shown in Figure 5 (a) with a delay time T = 15
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Figure 3.5 Computation of Lyapunov exponents for different delay time T from
Equation (1.1), with parameters a = −0.96, b = −1, c = 0.86, d = 0.85, µ = −1.

All Lyapunov exponents converges to zero

4. Conclusion

In this article, the computation of Lyapunov exponents as the important quantity in
dynamical system is considered. The computational results of Lyapunov exponents from
time series generated by two dimensional piecewise smooth maps with/without random
perturbation are shown in this article. This computational technique is very useful when
consider real data generated by for instance, stock, temperature, experimental data and so
on.
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