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DISTRIBUTIONAL CHAOS AND DISTRIBUTIONAL CHAOS

IN A SEQUENCE OCCURRING ON A SUBSET OF THE

ONE-SIDED SYMBOLIC SYSTEM

Yanjie Tang and Jiandong Yin

Abstract. The aim of this paper is to show that for the one-sided sym-
bolic system, there exist an uncountable distributively chaotic set con-

tained in the set of irregularly recurrent points and an uncountable dis-

tributively chaotic set in a sequence contained in the set of proper positive
upper Banach density recurrent points.

1. Introduction

The mathematical term chaos was first introduced by Li and Yorke [6] in
1975, where the authors gave a simple criterion for interval maps to be chaotic,
that is, “period three implies chaos”. Since then, a large number of scholars
have studied the chaotic phenomena involved in different fields. From different
points of view of understanding of chaotic phenomena, several chaotic concep-
tions were introduced by distinct authors. For example, Li in [5] introduced
the concept of ω-chaos; Xiong in [17] introduced a new kind of sensitivity
called n-sensitivity and for the transitive systems, he proved the existence of
n-sensitivity for each positive integer n; Devaney [2] connected the transitivity
with the denseness of periodic points of a dynamical system to raise a chaos
called Devaney’s chaos by other researchers and it was proved by Huang and
Ye [4] that Devaney’s chaos is stronger than the chaos in the sense of Li-Yorke.

The concept of distributional chaos was introduced by Schweizer and Smital
[10] in 1994 for the study of interval dynamic systems. In 2005, the distribu-
tional chaos was divided by Balibrea and Smital [1] into three distinct levels,
namely DC1, DC2 and DC3. After then, many results on distributional chaos
emerged. For example, Dvorakova [3] proved that if f is a DC3 continuous
map of a compact metric space, then also fN is DC3 for every N > 0; Oprocha
and Wu [9] proved that the average shadowing property trivializes in the case
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of mean equi-continuous systems and that it implies distributional chaos when
measure center is non-degenerate.

The concept of distributional chaos in a sequence was introduced in 1999 by
Wang [11], which is weaker than distributional chaos. Immediately afterwards,
many works on distributional chaos in a sequence were published. For instance,
Wang and Yang [15] proved that topologically weakly mixing implies distribu-
tional chaos in a sequence; Wang and Peng [14] proved that if f is transitive
and not minimal, then there is a factor map which is distributively chaotic in
a sequence.

The core issue of dynamical systems is the asymptotic property of orbits.
And it is well known that all the important dynamic behaviors of a dynamical
system are mainly concentrated on the set of non-wandering points. So the
set of wandering points can be regarded as a kind of interference of a system.
Whether the set of wandering points is all the interference of a system? The
answer is negative since in order to describe the smallest subsystem that main-
tains all the important dynamic behaviors of the original system, Zhou [18]
introduced two new recurrent levels between recurrent points and almost pe-
riodic points, which are called weakly almost periodic point and quasi-weakly
almost periodic point, respectively. And he pointed out that, in some certain,
to study the important dynamic behaviors of a dynamic system, it suffices to
study the properties of all weakly almost periodic points of a system.

The symbolic dynamical system (symbolic system for simplicity) is a special
dynamical system with extensive usefulness especially in constructing coun-
terexamples. Some symbolic systems have complexly dynamic behaviors. For
example, Liao [7] in 1998 constructed in symbolic systems a class of minimal
sets displaying distributional chaos. In 2007, Wang [12] proved that there exists
an uncountable distributively chaotic set in a sequence in symbolic systems and
every point in the chaotic set is weakly almost periodic but not almost periodic.
In 2015, Wang [13] strengthened the conclusion of [12] and obtained that the
one-sided shift has an uncountable distributively chaotic set contained in the
set of all weakly almost periodic points but every point in the chaotic set is not
almost periodic.

In this paper, we mainly prove that for the one-sided symbolic system
(ΣN , σ), there exist an uncountable distributively chaotic set contained in the
set of irregularly recurrent points and an uncountable distributively chaotic
set in a sequence contained in the set of proper positive upper Banach density
recurrent points of σ.

2. Preliminaries

We round out the introduction with some notations and known conclusions
that will be used in the proofs of main results of this paper.

We say that (X, f) is a dynamical system if X is a compact metric space
with a metric d and f : X → X is a continuous map. Use N and N0 to stand
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for the sets of positive integers and non-negative integers, respectively. Denote
by V (x, ε) the open ball centered at x ∈ X and a radius ε > 0, V (x, ε) stays for
the closure of V (x, ε) in X. The orbit of x ∈ X under f is denoted by Orb(x, f)
and in this paper, A − B := {x : x ∈ A, x /∈ B} denotes the difference set of
A,B ⊆ X.

Suppose U , V are nonempty open subsets of X and x ∈ X. Write

N(U, V ) =
{
n ∈ N0 : U ∩ f−n(V ) 6= ∅

}
and

N(x, U) = {n ∈ N0 : fn(x) ∈ U} .
The upper density of a set S ⊂ N is defined as

d(S) = lim sup
n→∞

|S ∩ {1, 2, . . . , n}|
n

and its lower density is defined as

d(S) = lim inf
n→∞

|S ∩ {1, 2, . . . , n}|
n

,

where |A| denotes the cardinality of the set A.
The upper Banach density of S is defined as

BD+(S) = lim sup
|I|→∞

|S ∩ I|
|I|

,

where I ranges over interval segments over N. The lower Banach density of S
can be similarly defined.

A point x ∈ X is called a recurrent point of f if for any ε > 0 there is a
positive integer n such that

fn(x) ∈ V (x, ε).

Denote by R(f) the set of all recurrent points of f .

Definition 2.1 ([18]). A point x ∈ X is called a weakly almost periodic point
of f if for any ε > 0 there is an integer Nε > 0 such that

|{r : fr(x) ∈ V (x, ε), 0 ≤ r < nNε}| ≥ n, ∀n > 0.

Definition 2.2 ([18]). A point x ∈ X is called a quasi-weakly almost periodic
point of f if for any ε > 0 there are an integer Nε > 0 and a subsequence {ni}
of positive integers such that

| {r : fr(x) ∈ V (x, ε), 0 ≤ r < niNε} | ≥ ni, ∀i > 0.

Definition 2.3 ([16]). A point x ∈ X is called a positive upper Banach density
recurrent point of f if for any ε > 0, N(x, V (x, ε)) has positive upper Banach
density.
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Denote by W (f), QW (f) and BD+(f) the sets of all weakly almost pe-
riodic points, all quasi-weakly almost periodic points and all positive upper
Banach density recurrent points of f , respectively. Clearly, W (f) ⊆ QW (f) ⊆
BD+(f) ⊆ R(f), and there are examples in [18] and [16] showing that all the
inclusion relations above are proper. And in [8], the author called each point
in QW (f) −W (f) an irregularly recurrent point of f . In the paper, we also
use this term and call each point in BD+(f)−QW (f) a proper positive upper
Banach density recurrent point of f . It is well known that for the one-sided
symbolic system (ΣN , σ) (see the following introduction), the sets of irregularly
recurrent points and proper positive upper Banach density recurrent points of
σ are non-empty.

In order to decide whether a point is weakly almost periodic or quasi-weakly
almost periodic, Zhou [18] posed the following useful lemmas.

Lemma 2.4 ([18]). Let x ∈ R(f). Then x ∈W (f) if and only if for any ε > 0,
N(x, V (x, ε)) has positive lower density.

Lemma 2.5 ([18]). Let x ∈ R(f). Then x ∈ QW (f) if and only if for any
ε > 0, N(x, V (x, ε)) has positive upper density.

Next, we recall the conception of distributional chaos.
Let x, y ∈ X. For any real t > 0, let

F ∗xy(t) = lim sup
n→∞

1

n

n−1∑
i=0

χ[0,t)(d(f i(x), f i(y))) and

Fxy(t) = lim inf
n→∞

1

n

n−1∑
i=0

χ[0,t)(d(f i(x), f i(y))),

where χA is the characteristic function of the set A. Both F ∗xy(t) and Fxy(t)
are non-decreasing functions and may be viewed as cumulative probability dis-
tribution functions satisfying F ∗xy(t) = Fxy(t) = 0 for all t < 0 (see [10] for
details).

Definition 2.6 ([10]). A pair of points (x, y) ∈ X ×X is said to be distribu-
tively chaotic if F ∗xy(t) = 1 for all t > 0 and Fxy(ε) = 0 for some ε > 0. f is
said to distributively chaotic if there exists an uncountable set D ⊂ X such
that any two different points in D are distributively chaotic.

Let N ≥ 2, S={0, 1, . . . , N − 1} and ΣN ={(x1x2 · · · ) : xi ∈ S, i = 1, 2, . . .}.
Define ρ : ΣN × ΣN → R as follows: for any x = (x1x2 · · · ), y = (y1y2 · · · ) ∈
ΣN ,

ρ(x, y) =

{
0, if x = y,
1
Nk , if x 6= y, where k = min {n ≥ 1 : xn 6= yn} − 1.

It is easy to verify that ρ is a metric on ΣN . The space (ΣN , ρ) is compact
and is called the one-sided symbolic space.
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Define σ : ΣN → ΣN by σ(x1x2 · · · ) = (x2x3 · · · ) for each (x1x2 · · · ) ∈ ΣN .
Obviously, σ is continuous and so (ΣN , σ) is a dynamical system which is

called the one-sided symbolic system. If Y is a non-empty closed invariant
subset of ΣN , then (Y, σ) is called a sub-shift of (ΣN , σ).

Every A ∈
⋃∞
n=1 S

n is called a tuple of S, where

Sn = {(x1x2 · · ·xn) : xi ∈ S, 1 ≤ i ≤ n}

for each n ≥ 1. We say that a tuple A = (a1a2 · · · an) of S occurs in the tuple
B = (b1b2 · · · bm) of S, denoted by A ≺ B, if there exists 0 ≤ i < m − n
such that aj = bi+j for each j = 1, 2, . . . , n, where n < m and n,m ∈ N.
Meanwhile, n is called the length of the tuple A = (a1a2 · · · an), denoted by
|A|. If B = (b1b2 · · · bm) and C = (c1c2 · · · cl) are two tuples of S, then BC =
(b1b2 · · · bmc1c2 · · · cl). What’s more, if A1, A2, . . . are infinitely many tuples of
S, then (A1A2 · · · ) is an element of ΣN .

Let A = (a1a2 · · · an) be a tuple of {0, 1}. Denote Ā = (ā1ā2 · · · ān) and call
it the inverse of A, where

āi =

{
0, if ai = 1,

1, if ai = 0

for i = 1, 2, . . . , n. Clearly, |Ā| = |A| and ¯̄A = A. See [19] for more details of
symbolic systems.

3. Distributional chaos occurring on the set of irregularly recurrent
points of the one-sided symbolic system

In order to prove the main result of this section, a lemma is firstly given.

Lemma 3.1 ([7]). For each N ≥ 2, there exists an uncountable subset E of
ΣN such that for any two different points x = (x1x2 · · · ), y = (y1y2 · · · ) of E,
xn = yn for infinitely many n and xm 6= ym for infinitely many m.

The following is the main result of this section.

Theorem 3.2. Let N ≥ 2 and (ΣN , σ) be the one-sided symbolic system. Then
there exists an uncountable distributively chaotic set of σ contained in the set
of irregularly recurrent points of σ.

Proof. For simplicity, we only prove the result for the case of N = 2 since the
proofs of other cases are completely similar.

Let A1 = 01 and

A2 = D1

|D1|2︷ ︸︸ ︷
0 · · · 0

|D1|3︷ ︸︸ ︷
1 · · · 1

m11︷ ︸︸ ︷
D1 · · ·D1,

here D1 = A1Ā1 (or Ā1A1) and m11 = |D1

|D1|2︷ ︸︸ ︷
0 · · · 0

|D1|3︷ ︸︸ ︷
1 · · · 1|2.
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Let

A3 = D2

|D2|2︷ ︸︸ ︷
0 · · · 0

|D2|3︷ ︸︸ ︷
1 · · · 1

m21︷ ︸︸ ︷
D1 · · ·D1

m22︷ ︸︸ ︷
D2 · · ·D2,

where D2 is exactly a finite arrangement of all tuples of

B2 =
{
B1B2 : Bi ∈

{
Ai, Āi

}
, i = 1, 2

}
and m21 ≥ |D2

|D2|2︷ ︸︸ ︷
0 · · · 0

|D2|3︷ ︸︸ ︷
1 · · · 1|2, m22 = |D2

|D2|2︷ ︸︸ ︷
0 · · · 0

|D2|3︷ ︸︸ ︷
1 · · · 1

m21︷ ︸︸ ︷
D1 · · ·D1|2.

Assume that Di and Ai are defined successfully for all 1 ≤ i ≤ k, k ∈ N, put

Ak+1 = Dk

|Dk|2︷ ︸︸ ︷
0 · · · 0

|Dk|3︷ ︸︸ ︷
1 · · · 1

mk1︷ ︸︸ ︷
D1 · · ·D1

mk2︷ ︸︸ ︷
D2 · · ·D2 · · ·

mkk︷ ︸︸ ︷
Dk · · ·Dk,

where Dn is exactly a finite arrangement of all tuples of Bn for all n ≤ k, here

Bn =
{
B1B2 · · ·Bk : Bi ∈

{
Ai, Āi

}
, i = 1, 2, . . . , n

}
and for 1 ≤ i ≤ k,

mki ≥ |Dk

|Dk|2︷ ︸︸ ︷
0 · · · 0

|Dk|3︷ ︸︸ ︷
1 · · · 1

mk1︷ ︸︸ ︷
D1 · · ·D1

mk2︷ ︸︸ ︷
D2 · · ·D2 · · ·

mk,i−1︷ ︸︸ ︷
Di−1 · · ·Di−1|2,

mkk = |Dk

|Dk|2︷ ︸︸ ︷
0 · · · 0

|Dk|3︷ ︸︸ ︷
1 · · · 1

mk1︷ ︸︸ ︷
D1 · · ·D1

mk2︷ ︸︸ ︷
D2 · · ·D2 · · ·

mk,k−1︷ ︸︸ ︷
Dk−1 · · ·Dk−1|2.

So by induction, Bk is defined well for all k ∈ N.
By Lemma 3.1, take an uncountable subset E of Σ2 satisfying that for any

two different points x = (x1x2 · · · ) and y = (y1y2 · · · ) in E, xn = yn for
infinitely many n and xm 6= ym for infinitely many m.

Let

B =
{

(B1B2 · · · ) ∈ Σ2 : Bi ∈
{
Ai, Āi

}
, i ≥ 1

}
⊆ Σ2

and define φ : E → B by φ(x) = (B1B2 · · · ) for all x = (x1x2 · · · ) ∈ E, where

Bi =

{
Ai, if xi = 1,

Āi, if xi = 0

for each i ∈ N.
Write S̃ = φ(E). Obviously, S̃ ⊆ B. Since E is uncountable and φ is

injective, S̃ is uncountable.
Next it suffices to prove the following claims.
(1) S̃ ⊆ QW (σ);

(2) S̃ ∩W (σ) = ∅;
(3) S̃ is an uncountable distributively chaotic set of (Σ2, σ).
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Now we prove claim (1): Clearly S̃ ⊆ R(σ). Let y = (B1B2 · · · ) be a point

in S̃. Put an = |B1B2 · · ·Bn| for every n ∈ N. Then for any ε > 0, there exists
k ∈ N such that 1

2ak
< ε. Set for all i ≥ 1,

ni = |B1B2 · · ·Bk+iDk+i

|Dk+i|2︷ ︸︸ ︷
0 · · · 0

|Dk+i|3︷ ︸︸ ︷
1 · · · 1

mk+i,1︷ ︸︸ ︷
D1 · · ·D1

mk+i,2︷ ︸︸ ︷
D2 · · ·D2 · · ·

mk+i,k︷ ︸︸ ︷
Dk · · ·Dk|.

Then we have

ni = |B1 · · ·Bk+i|+ |Dk+i

|Dk+i|2︷ ︸︸ ︷
0 · · · 0

|Dk+i|3︷ ︸︸ ︷
1 · · · 1

mk+i,1︷ ︸︸ ︷
D1 · · ·D1 · · ·

mk+i,k−1︷ ︸︸ ︷
Dk−1 · · ·Dk−1|

+ |Dk|mk+i,k

≤ |B1B2 · · ·Bk+i|+mk+i,k + |Dk| ×mk+i,k

≤ (2 + |Dk|)×mk+i,k.

Since for any fixed i ∈ N, B1B2 · · ·Bi ≺ Di, we obtain that

|N(y, V (y, ε)) ∩ {1, 2, . . . , ni} | ≥ mk+i,k.

So

d(N(y, V (y, ε))) = lim sup
n→∞

|N(y, V (y, ε)) ∩ {1, 2, . . . , n} |
n

≥ lim sup
i→∞

|N(y, V (y, ε)) ∩ {1, 2, . . . , ni} |
ni

≥ mk+i,k

(2 + |Dk|)×mk+i,k

=
1

2 + |Dk|
> 0,

which implies that S̃ ⊆ QW (σ).

Next we prove Claim (2). For any y = (B1B2 · · · ) ∈ S̃ there exists x =
(x1x2 · · · ) ∈ E such that φ(x) = y. For convenience, write y = (y1y2 · · · yn · · · ).

If y1 = 1, then we consider the following two cases.
Case 1: if ‘1’ appears infinite many times in x, that is, there exists a sequence

{ni} of positive integers such that xni
= 1 for each i ∈ N. Then Bni

= Ani
for

all i ∈ N. Note that when

j ∈
[
ani−1 + |Dni−1|, ani−1 + |Dni−1|+ |Dni−1|2 − 1

]
,

the first term of σj(y) is ‘0’, i.e., (σj(y))1 = 0, hence ρ(y, (σj(y))) = 1.
Put mi = |B1 · · ·Bni−1|+ |Dni−1|+ |Dni−1|2. We have

d(N(y, V (y,
1

3
))) = lim inf

n→∞

|N(y, V (y, 13 )) ∩ {1, 2, . . . , n} |
n

≤ lim inf
i→∞

|N(y, V (y, 13 )) ∩ {1, 2, . . . ,mi} |
mi

≤ lim inf
i→∞

|B1 · · ·Bni−1|+ |Dni−1|
|B1 · · ·Bni−1|+ |Dni−1|+ |Dni−1|2
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≤ lim
i→∞

2|Dni−1|
|Dni−1|+ |Dni−1|2

= 0,

which draws that y /∈W (σ).
Case 2: if there are only a finite number of ‘1’ appearing in x, i.e., there are

infinitely many ‘0’ appearing in x, then there exists a sequence {ns} of positive
integers such that xns

= 0 for every s ∈ N and Bns
= Āns

for all s ∈ N. So
when

j ∈
[
ans−1+ |Dns−1|+ |Dns−1|2, ans−1+ |Dns−1|+ |Dns−1|2+ |Dns−1|3− 1

]
,

the first term of σj(y) is ‘0’, i.e., (σj(y))1 = 0, hence ρ(y, (σj(y))) = 1.
Put ms = |B1 · · ·Bns−1|+ |Dns−1|+ |Dns−1|2 + |Dns−1|3, then

d(N(y, V (y,
1

3
))) = lim inf

n→∞

|(N(y, V (y, 13 )) ∩ {1, 2, . . . , n} |
n

≤ lim inf
s→∞

|N(y, V (y, 13 )) ∩ {1, 2, . . . ,ms} |
ms

≤ lim inf
s→∞

|B1 · · ·Bns−1|+ |Dns−1|+ |Dns−1|2

|B1 · · ·Bns−1|+ |Dns−1|+ |Dns−1|2 + |Dns−1|3

≤ lim
s→∞

3|Dns−1|2

|Dns−1|3
= 0.

Therefore, y /∈W (σ).
If the first term of y is ‘0’, i.e., y1 = 0, we can similarly prove Claim (2),

here we omit it.

Proof of Claim (3):

Let x = (B1B2 · · · ) and y = (C1C2 · · · ) be two different points in S̃, where

Bi, Ci ∈
{
Ai, Āi

}
, i ∈ N. By the definition of S̃, there are two sequences {pi}

and {qi} of positive integers with pi → ∞ and qi → ∞ such that Bpi = Cpi
and Bqi = C̄qi for all i ∈ N. For simplicity, put for all j ∈ N,

δxy(j) = ρ(σj(x), σj(y)).

Firstly, it is easy to see that given pi > 1, the first api−1 terms of σj(x)
and σj(y) are same for all api−1 ≤ j ≤ api − api−1, so δxy(j) ≤ 1

2api
−1 . Thus

for given t > 0, σxy(j) ≤ 1
2api

−1 < t provided i is large enough. That is

χ[0,t)(δxy(j)) = 1 when j ∈ [api−1, api − api−1]. Furthermore,

1

api − api−1

api−api−1∑
j=1

χ[0,t)(δxy(j)) ≥ 1

api − api−1

api−api−1∑
j=api−1+1

χ[0,t)(δxy(j))

=
api − api−1 − api−1

api − api−1
= 1− api−1

api − api−1
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= 1− |B1 · · ·Bpi−1|
|Bpi |

≥ 1− |Dpi−1|
mpi−1,pi−1 × |Dpi−1|

→ 1

as i→∞. This proves F ∗xy(t) = 1.
Secondly, it is easy to see that for a given qi > 1, the first aqi−1 terms of

σj(x) and σj(y) are distinct correspondingly for all aqi−1 ≤ j ≤ aqi − aqi−1,
so δxy(j) = 1. Therefore for any ε ∈ (0, 1], χ[0,ε)(δxy(j)) = 0 for all j with
aqi−1 ≤ j ≤ aqi − aqi−1. Furthermore,

1

aqi − aqi−1

aqi−aqi−1∑
j=1

χ[0,ε)(δxy(j)) ≤ 1

aqi − aqi−1

aqi−1∑
j=1

χ[0,ε)(δxy(j))

≤ aqi−1
aqi − aqi−1

=
|B1 · · ·Bqi−1|
|Bqi |

≤ |Dqi−1|
mqi−1,qi−1|Dqi−1|

=
1

mqi−1,qi−1
→ 0

when i→∞. This shows Fxy(ε) = 0 for all ε ∈ (0, 1].

So (x, y) ∈ S̃× S̃ is a distributively chaotic pair of σ. The arbitrariness of x

and y implies that S̃ is an uncountable distributively chaotic set of (Σ2, σ). �

4. Distributional chaos in a sequence occurring on the set of proper
positive upper Banach density recurrent points of the one-sided

symbolic system

In this section, we consider the distributional chaos occurring on the set of
proper positive upper Banach density recurrent points of the one-sided symbolic
system. We prove that there exists an uncountable distributively chaotic set in
a sequence of σ contained in the set of proper positive upper Banach density
recurrent points. But we don’t know whether there also exists distributively
chaotic phenomenon of σ occurring on such a set.

At first, we review the notion of distributional chaos in a sequence introduced
by Wang [11].

Let (X, f) be a dynamical system, {pi} be a strictly increasing sequence of
positive integers, x, y ∈ X and t > 0. Write

F ∗xy(t, {pi}) = lim sup
n→∞

1

n

n−1∑
i=0

χ[0,t)(d(fpi(x), fpi(y)))
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and

Fxy(t, {pi}) = lim inf
n→∞

1

n

n−1∑
i=0

χ[0,t)(d(fpi(x), fpi(y))).

Definition 4.1 ([11]). If D ⊆ X for any x, y ∈ D with x 6= y, F ∗xy(t, {pi}) = 1
for all t > 0 and Fxy(ε, {pi}) = 0 for some ε > 0, then D is said to be a
distributively chaotic set with respect to {pi} for f , and (x, y) is said to be a
distributively chaotic point pair with respect to {pi}. Denote by DCR(f, {pi})
the set of all distributively chaotic point pairs with respect to {pi} for f .
f is said to be distributively chaotic in a sequence if f has an uncountable

distributively chaotic set with respect to some sequence of positive integers.

Let {pi} be an increasing sequence of positive integers. Set

PR(f, {pi}) = {(x, y) ∈ X ×X : ∀ε > 0, ∃i ∈ N s.t. d(fpi(x), fpi(y)) < ε}
and call it the proximal relation of f with respect to {pi}. The asymptotic
relation and distal relation of f with respect to {pi} are defined, respectively,
as

AR(f, {pi}) =
{

(x, y) ∈ X ×X : lim
i→∞

d(fpi(x), fpi(y)) = 0
}

and
DR(f, {pi}) = X ×X − PR(f, {pi}).

Lemma 4.2 ([2]). If both {pi} and {qi} are infinitely increasing subsequences
of {mi}, a sequence of positive integers, then there exists an infinitely increasing
subsequence {ti} of {mi} such that

AR(f, {pi}) ∩DR(f, {qi}) ⊆ DCR(f, {ti}).

Next we present the main result of this section as follows.

Theorem 4.3. Let N ≥ 2 and (ΣN , σ) be the one-sided symbolic system.
Then there exists an uncountable distributively chaotic set in a sequence of σ
contained in the set of proper positive upper Banach density recurrent points of
σ.

Proof. We only prove the result for the case of N = 2 because the proofs of
other cases can be proved similarly.

Fix arbitrarily a = (a1a2 · · · ) ∈ Σ2, denote [a]n = a1a2 · · · an. Let

Ba = {([a]1[b]1[a]2[b]2 · · · [a]n[b]n · · · ) : b = (b1b2 · · · ) ∈ Σ2} ,
then Ba is an uncountable subset of Σ2.

(1) For any e = (e1e2 · · · ) ∈ Ba, put Q1 = 1e1 and Q2 = Q1

|Q1|2︷ ︸︸ ︷
0 · · · 0Q1e2 and

Q3 = Q2

|Q2|2︷ ︸︸ ︷
0 · · · 0Q1Q1

|Q2|2︷ ︸︸ ︷
0 · · · 0Q2Q2e3.
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By induction, for each n ∈ N with n ≥ 3, set

Qn = Qn−1

|Qn−1|2︷ ︸︸ ︷
0 · · · 0

n−1︷ ︸︸ ︷
Q1 · · ·Q1

|Qn−1|2︷ ︸︸ ︷
0 · · · 0

n−1︷ ︸︸ ︷
Q2 · · ·Q2 · · ·

|Qn−1|2︷ ︸︸ ︷
0 · · · 0

n−1︷ ︸︸ ︷
Qn−1 · · ·Qn−1 en.

Then Qn is defined well for each n ∈ N. Set x(e) = limn→∞(Qn000 · · · ). Let
J = {x(e) : e ∈ Ba}. Obviously, J is an uncountable set.

(2) Next we prove that J ⊆ BD+(σ).
Clearly J ⊆ R(σ). Take x ∈ J and let V be a neighborhood of x, then there

exists k ∈ N such that for each y ∈ Σ2, if y begins with Qk, then y ∈ V . Notice
that

x = (Q1 · · ·
k︷ ︸︸ ︷

Qk · · ·Qk · · ·
k+1︷ ︸︸ ︷

Qk · · ·Qk · · ·
k+2︷ ︸︸ ︷

Qk · · ·Qk · · · ),

take ni = |Q1 · · ·
k+i︷ ︸︸ ︷

Qk · · ·Qk | and Ii = [ni−(k+i)|Qk|, ni]. Then |N(x, V )∩Ii| ≥
k + i and

lim sup
|I|→∞

|N(x, V ) ∩ I|
|I|

≥ lim sup
i→∞

|N(x, V ) ∩ Ii|
|Ii|

≥ lim
i→∞

k + i

|Qk| × (k + i)

≥ 1

|Qk|
> 0.

So x ∈ BD+(σ).
(3) We will prove that every x ∈ J is not quasi-weakly almost periodic.
Take x ∈ J and V0 = V (x, 13 ). At first, we claim that for each n ∈ N, there

is k ∈ N such that |Qk| ≤ n < |Qk+1| and

|N(x, V0) ∩ {1, 2, . . . , n} |
n

≤ |N(x, V0) ∩ {1, 2, . . . , |Qk|} |
|Qk|

.

In fact, write Nk = |N(x, V0) ∩ {1, 2, . . . , |Qk|} |. When 0 < i ≤ k and

|Qk|+ i|Qk|2 +k(|Q1|+ · · ·+ |Qi−1|) < n ≤ |Qk|+ i|Qk|2 +k(|Q1|+ · · ·+ |Qi|),

then we have

|N(x, V0) ∩ {1, 2, . . . , n} |
n

≤ Nk + k(|Q1|+ · · ·+ |Qi|)
|Qk|+ i|Qk|2 + k(|Q1|+ · · ·+ |Qi−1|)

.
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Since

Nk + k(|Q1|+ · · ·+ |Qi|)
|Qk|+ i|Qk|2 + k(|Q1|+ · · ·+ |Qi−1|)

− Nk
|Qk|

=
k|Qk|(|Q1|+ · · ·+ |Qi|)− iNk|Qk|2 − kNk(|Q1|+ · · ·+ |Qi−1|)

(|Qk|+ i|Qk|2 + k(|Q1|+ · · ·+ |Qi−1|))|Qk|

≤ |Qk|(k(|Q1|+ · · ·+ |Qi|)− i|Qk|)− kNk(|Q1|+ · · ·+ |Qi−1|)
(|Qk|+ i|Qk|2 + k(|Q1|+ · · ·+ |Qi−1|))|Qk|

≤ −kNk(|Q1|+ · · ·+ |Qi−1|)
(|Qk|+ i|Qk|2 + k(|Q1|+ · · ·+ |Qi−1|))|Qk|

≤ 0,

we obtain that
|N(x, V0) ∩ {1, 2, . . . , n} |

n
≤ Nk
|Qk|

.

When 0 ≤ i ≤ k − 1 and

|Qk|+i|Qk|2+k(|Q1|+· · ·+|Qi|) < n ≤ |Qk|+(i+1)|Qk|2+k(|Q1|+· · ·+|Qi|),
we have

|N(x, V0) ∩ {1, 2, . . . , n} |
n

≤ Nk + k(|Q1|+ · · ·+ |Qi|)
|Qk|+ i|Qk|2 + k(|Q1|+ · · ·+ |Qi|)

.

By the similar argument,

|N(x, V0) ∩ {1, 2, . . . , n} |
n

≤ Nk
|Qk|

.

Therefore,

lim sup
n→∞

|N(x, V0) ∩ {1, 2, . . . , n)}|
n

≤ lim sup
k→∞

|N(x, V0) ∩ {1, 2, . . . , |Qk|}|
|Qk|

≤ lim sup
k→∞

|Qk|+ k(|Q1|+ · · ·+ |Qk|)
k|Qk|2

= 0

which yields that x is not a quasi-weakly almost periodic point of (Σ2, σ).
(4) We will prove that J is a distributively chaotic set of (Σ2, σ) with respect

to some sequence of positive integers.
Firstly, we take ni = |Qi2 | − i for each i ∈ N, then for any x(e) ∈ J , where

e ∈ Ba, we have

σni(x(e)) = ([a]i · · · )
and

ρ(σni(x(e)), a) ≤ 1

2i
.

Hence

lim
i→∞

ρ(σni(x(e)), a) = 0.
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By the arbitrariness of x, we obtain that for any x, y ∈ J ,

lim
i→∞

ρ(σni(x), σni(y)) = 0,

i.e., (x, y) ∈ AR(σ, {ni}).
Secondly, put qi = |Qi2+i| − i for each i ∈ N, then for any x(e) ∈ J , where

e ∈ Ba, we have

σqi(x(e)) = ([b]i · · · ).
For all x, y ∈ J with x 6= y, there exist β, γ ∈ Ba such that x = x(β) and

y = y(γ). Without loss of generality, assume that β = ([a]1[β]1[a]2[β]2 · · · ) and
γ = ([a]1[γ]1[a]2[γ]2 · · · ). By the constructions of J and Ba, it is not hard to
see that

(β1β2 · · · ) = β 6= γ = (γ1γ2 · · · ).
Therefore

lim
i→∞

ρ(σqi(x), σqi(y)) = ρ(γ, β) > 0,

i.e., (x, y) ∈ DR(σ, {qi}). Hence

J × J ⊂ AR(σ, {ni}) ∩DR(σ, {qi}).

By Lemma 4.2, there exists {ti} ⊂ {ni}∪{qi} such that J×J ⊆ DCR(σ, {ti}),
so J is a distributively chaotic set of (Σ2, σ) with respect to {ti}. �
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[3] J. Dvořáková, On a problem of iteration invariants for distributional chaos, Commun.

Nonlinear Sci. Numer. Simul. 17 (2012), no. 2, 785–787. https://doi.org/10.1016/j.

cnsns.2011.06.015

[4] W. Huang and X. Ye, Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos,

Topology Appl. 117 (2002), no. 3, 259–272. https://doi.org/10.1016/S0166-8641(01)
00025-6

[5] S. H. Li, ω-chaos and topological entropy, Trans. Amer. Math. Soc. 339 (1993), no. 1,

243–249. https://doi.org/10.2307/2154217
[6] T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975),

no. 10, 985–992. https://doi.org/10.2307/2318254

[7] G. Liao and Q. Fan, Minimal subshifts which display Schweizer-Smı́tal chaos and have
zero topological entropy, Sci. China Ser. A 41 (1998), no. 1, 33–38. https://doi.org/

10.1007/BF02900769
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