• 제목/요약/키워드: Channel thickness

검색결과 555건 처리시간 0.032초

Remote Sensing Cloud's Microphysical Properties by Satellite Data

  • Liu, Jian
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1258-1260
    • /
    • 2003
  • Cloud's properties can be showed on different spectral channel. The 0.65${\mu}$m reflectance is mainly function of cloud optical thickness and reflectance of 1.6${\mu}$m is sensitive to cloud phase and particle size distribution. So we can use multi-spectral information to analysis cloud's microphysical properties.

  • PDF

활성층 두께 및 열처리 온도에 따른 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 전기적 특성 변화 (Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors)

  • 백찬수;임기조;임동혁;김현후
    • 한국전기전자재료학회논문지
    • /
    • 제25권7호
    • /
    • pp.521-524
    • /
    • 2012
  • We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.

A Study on Contact Resistance Reduction in Ni Germanide/Ge using Sb Interlayer

  • Kim, Jeyoung;Li, Meng;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.210-214
    • /
    • 2016
  • In this paper, the decrease in the contact resistance of Ni germanide/Ge contact was studied as a function of the thickness of the antimony (Sb) interlayer for high performance Ge MOSFETs. Sb layers with various thickness of 2, 5, 8 and 12 nm were deposited by RF-Magnetron sputter on n-type Ge on Si wafers, followed by in situ deposition of 15nm-thick Ni film. The contact resistance of samples with the Sb interlayer was lower than that of the reference sample without the Sb interlayer. We found that the Sb interlayer can lower the contact resistance of Ni germanide/Ge contact but the reduction of contact resistance becomes saturated as the Sb interlayer thickness increases. The proposed method is useful for high performance n-channel Ge MOSFETs.

소스/드레인 전극의 두께변화에 따른 TIPS-pentacene 트랜지스터의 전기적 특성 연구 (Study on die electric characteristics of TIPS-pentacene transistors with variation of electrode thickness)

  • 양진우;형건우;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.323-324
    • /
    • 2009
  • We investigated the electrical properties of tris-isopropylsilylethynyl (TIPS)-pentacene organic thin-film transistors (OTFTs) employing Ni/Ag source/drain electrodes. The gap height between the gate insulator and S/D electrode was controlled by changing the thickness of Ag under-layer(20, 30, 40 and 50nm). After evaporating the Ni under-layer, TIPS pentacene channel material was dropping the gap between the gate insulator and SID electrodes. The electrical proprieties of OTFT such as filed-effect mobility, on/off ratio, threshold voltage and subthreshold slope were significantly influenced by the gap height.

  • PDF

촉매 활성층 두께 제어를 통한 연료전지 성능 해석 (Performance Analysis of Fuel Cell by Controlling Active Layer Thickness of Catalyst)

  • 김홍건
    • 한국공작기계학회논문집
    • /
    • 제16권3호
    • /
    • pp.133-140
    • /
    • 2007
  • A 2-D model of fluid flow, mass transport and electrochemistry is analysed to examine the effect of current density at the current collector depending on active layer thickness of catlyst in polymer elecrolyte fuel cells. The finite element method is used to solve the continuity, potential and Maxwell-Stefan equations in the flow channel and gas diffusion electrode regions. For the material behavior of electrode reactions in the active catalyst layers, the agglomerate model is implemented to solve the diffusion-reaction problem. The calculated model results are described and compared with the different thickness of active catalyst layers. The significance of the results is discussed in the viewpoint of the current collecting capabilities as well as mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in the present analysis.

3D NAND Flash Memory에 Ferroelectric Material을 사용한 Current Path 개선 (Improvement of Current Path by Using Ferroelectric Material in 3D NAND Flash Memory)

  • 이지환;이재우;강명곤
    • 전기전자학회논문지
    • /
    • 제27권4호
    • /
    • pp.399-404
    • /
    • 2023
  • 본 논문에서는 3D NAND Flash memory의 O/N/O(Oxide/Nitride/Oxide) 구조와 blocking oxide를 ferroelectric material로 대체한 O/N/F(Oxide/Nitride/Ferroelectric) 구조의 current path를 분석했다. O/N/O 구조는 Vread가 인가되면 neighboring cell의 E-field로 인해 current path가 channel 후면에 형성된다. 반면 O/N/F 구조는 ferroelectric material의 polarization으로 인해 electron이 channel 전면으로 이동하여 current path가 전면에 형성된다. 또한 channel thickness와 channel length에 따른 소자 특성을 분석했다. 분석 결과 O/N/F 구조의 전면 electron current density 증가는 O/N/O 구조보다 2.8배 더 높았고 O/N/F 구조의 전면 electron current density 비율이 17.7% 높았다. 따라서 O/N/O 구조보다 O/N/F 구조에서 전면 current path가 더 효과적으로 형성된다.

박막의 두께가 비정질 InGaZnO 무접합 트랜지스터의 소자 불안정성에 미치는 영향 (Effects of thin-film thickness on device instability of amorphous InGaZnO junctionless transistors)

  • 전종석;조성호;최혜지;박종태
    • 한국정보통신학회논문지
    • /
    • 제21권9호
    • /
    • pp.1627-1634
    • /
    • 2017
  • 비정질 InGaZnO 박막 두께가 다른 무접합 트랜지스터를 제작하고 두께에 따른 양과 음의 게이트 스트레스 전압 및 빛을 비춘 상태에서 소자 불안정성을 분석하였다. 채널 박막 두께가 얇을수록 게이트 스트레스 및 빛이 인가된 상태에서 문턱전압 및 드레인 전류 변화가 큰 것을 알 수 있었다. 그 원인을 stretched-exponential 모델과 소자 시뮬레이션을 수행하여 설명하였다. 박막이 얇을수록 캐리어 트랩핑 시간이 짧기 때문에 전자나 홀이 빨리 활성화되는 것과 채널 박막의 뒷부분에서 채널의 수직 전계가 증가하여 전자나 홀을 많이 축적할 수 있는 것으로 설명하였다. IGZO 무접합 트랜지스터 제작에서 채널 박막의 두께를 결정할 때 채널 박막 두께가 얇을수록 소자 불안정성이 큰 것을 고려해야 됨을 알 수 있다.

Synthesis and Characterization of Layer-Patterned Graphene on Ni/Cu Substrate

  • Jung, Daesung;Song, Wooseok;Lee, Seung Youb;Kim, Yooseok;Cha, Myoung-Jun;Cho, Jumi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.618-618
    • /
    • 2013
  • Graphene is only one atom thick planar sheet of sp2-bonded carbon atoms arranged in a honeycomb crystal lattice, which has flexible and transparent characteristics with extremely high mobility. These noteworthy properties of graphene have given various applicable opportunities as electrode and/or channel for various flexible devices via suitable physical and chemical modifications. In this work, for the development of all-graphene devices, we performed to synthesize alternately patterned structure of mono- and multi-layer graphene by using the patterned Ni film on Cu foil, having much different carbon solid solubilities. Depending on the process temperature, Ni film thickness, introducing occasion of methane and gas ratio of CH4/H2, the thickness and width of the multi-layer graphene were considerably changed, while the formation of monolayer graphene on just Cu foil was not seriously influenced. Based on the alternately patterned structure of mono- and multi-layer graphene as a channel and electrode, respectively, the flexible TFT (thin film transistor) on SiO2/Si substrate was fabricated by simple transfer and O2 plasma etching process, and the I-V characteristics were measured. As comparing the change of resistance for bending radius and the stability for a various number of repeated bending, we could confirm that multi-layer graphene electrode is better than Au/Ti electrode for flexible applications.

  • PDF

초미세 금속 박판의 마이크로 채널 포밍 (Micro Channel Forming with Ultra Thin Metal Foil)

  • 주병윤;오수익;백승욱
    • 대한기계학회논문집A
    • /
    • 제30권2호
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.