• Title/Summary/Keyword: Channel thickness

Search Result 555, Processing Time 0.032 seconds

Remote Sensing Cloud's Microphysical Properties by Satellite Data

  • Liu, Jian
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1258-1260
    • /
    • 2003
  • Cloud's properties can be showed on different spectral channel. The 0.65${\mu}$m reflectance is mainly function of cloud optical thickness and reflectance of 1.6${\mu}$m is sensitive to cloud phase and particle size distribution. So we can use multi-spectral information to analysis cloud's microphysical properties.

  • PDF

Electrical Properties Depending on Active Layer Thickness and Annealing Temperature in Amorphous In-Ga-Zn-O Thin-film Transistors (활성층 두께 및 열처리 온도에 따른 비정질 인듐갈륨징크옥사이드 박막트랜지스터의 전기적 특성 변화)

  • Baek, Chan-Soo;Lim, Kee-Joe;Lim, Dong-Hyeok;Kim, Hyun-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.521-524
    • /
    • 2012
  • We report on variations of electrical properties with different active layer thickness and post-annealing temperature in amorphous In-Ga-Zn-O (IGZO) thin-film transistors (TFTs). In particular, subthreshold swing (SS) of the IGZO-TFTs was improved as increasing the active layer thickness at an given post-annealing temperature, accompanying the negative shift in turn-off voltage. However, as increasing post-annealing temperature, only turn-off voltage was shifted negatively with almost constant SS value. The effect of the active layer thickness and post-annealing temperature on electrical properties, such as SS, field effect mobility and turn-off voltage in IGZO-TFTs has been explained in terms of the variation of trap density in IGZO channel layer and at gate dielectric/IGZO interface.

A Study on Contact Resistance Reduction in Ni Germanide/Ge using Sb Interlayer

  • Kim, Jeyoung;Li, Meng;Lee, Ga-Won;Oh, Jungwoo;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.210-214
    • /
    • 2016
  • In this paper, the decrease in the contact resistance of Ni germanide/Ge contact was studied as a function of the thickness of the antimony (Sb) interlayer for high performance Ge MOSFETs. Sb layers with various thickness of 2, 5, 8 and 12 nm were deposited by RF-Magnetron sputter on n-type Ge on Si wafers, followed by in situ deposition of 15nm-thick Ni film. The contact resistance of samples with the Sb interlayer was lower than that of the reference sample without the Sb interlayer. We found that the Sb interlayer can lower the contact resistance of Ni germanide/Ge contact but the reduction of contact resistance becomes saturated as the Sb interlayer thickness increases. The proposed method is useful for high performance n-channel Ge MOSFETs.

Study on die electric characteristics of TIPS-pentacene transistors with variation of electrode thickness (소스/드레인 전극의 두께변화에 따른 TIPS-pentacene 트랜지스터의 전기적 특성 연구)

  • Yang, Jin-Woo;Hyung, Gun-Woo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.323-324
    • /
    • 2009
  • We investigated the electrical properties of tris-isopropylsilylethynyl (TIPS)-pentacene organic thin-film transistors (OTFTs) employing Ni/Ag source/drain electrodes. The gap height between the gate insulator and S/D electrode was controlled by changing the thickness of Ag under-layer(20, 30, 40 and 50nm). After evaporating the Ni under-layer, TIPS pentacene channel material was dropping the gap between the gate insulator and SID electrodes. The electrical proprieties of OTFT such as filed-effect mobility, on/off ratio, threshold voltage and subthreshold slope were significantly influenced by the gap height.

  • PDF

Performance Analysis of Fuel Cell by Controlling Active Layer Thickness of Catalyst (촉매 활성층 두께 제어를 통한 연료전지 성능 해석)

  • Kim, H.G.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • A 2-D model of fluid flow, mass transport and electrochemistry is analysed to examine the effect of current density at the current collector depending on active layer thickness of catlyst in polymer elecrolyte fuel cells. The finite element method is used to solve the continuity, potential and Maxwell-Stefan equations in the flow channel and gas diffusion electrode regions. For the material behavior of electrode reactions in the active catalyst layers, the agglomerate model is implemented to solve the diffusion-reaction problem. The calculated model results are described and compared with the different thickness of active catalyst layers. The significance of the results is discussed in the viewpoint of the current collecting capabilities as well as mass transportation phenomena, which is inferred that the mass transport of reactants dictates the efficiency of the electrode in the present analysis.

Improvement of Current Path by Using Ferroelectric Material in 3D NAND Flash Memory (3D NAND Flash Memory에 Ferroelectric Material을 사용한 Current Path 개선)

  • Jihwan Lee;Jaewoo Lee;Myounggon Kang
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.399-404
    • /
    • 2023
  • In this paper, we analyzed the current path in the O/N/O (Oxide/Nitride/Oxide) structure of 3D NAND Flash memory and in the O/N/F (Oxide/Nitride/Ferroelectric) structure where the blocking oxide is replaced by a ferroelectric. In the O/N/O structure, when Vread is applied, a current path is formed on the backside of the channel due to the E-fields of neighboring cells. In contrast, the O/N/F structure exhibits a current path formed on the front side due to the polarization of the ferroelectric material, causing electrons to move toward the channel front. Additionally, we performed an examination of device characteristics considering channel thickness and channel length. The analysis results showed that the front electron current density in the O/N/F structure increased by 2.8 times compared to the O/N/O structure, and the front electron current density ratio of the O/N/F structure was 17.7% higher. Therefore, the front current path is formed more effectively in the O/N/F structure than in the O/N/O structure.

Effects of thin-film thickness on device instability of amorphous InGaZnO junctionless transistors (박막의 두께가 비정질 InGaZnO 무접합 트랜지스터의 소자 불안정성에 미치는 영향)

  • Jeon, Jong Seok;Jo, Seong Ho;Choi, Hye Ji;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1627-1634
    • /
    • 2017
  • In this work, a junctionless transistor with different film thickness of amorphous InGaZnO has been fabricated and it's instability has been analyzed with different film thickness under positive and negative gate stress as well as light illumination. It was found that the threshold voltage shift and the variation of drain current have been increased with decrease of film thickness under the condition of gate stress and light illumination. The reasons for the observed results have been explained by stretched-exponential model and device simulation. Due to the reduced carrier trapping time with decrease of film thickness, electrons and holes can be activated easily. Due to the increase of vertical channel electric field reaching the back interface with decrease of film thickness, more electrons and holes can be accumulated in back interface. When one decides the film thickness for the fabrication of junctionless transistor, the more significant device instability with decrease of film thickness should be consdered.

Synthesis and Characterization of Layer-Patterned Graphene on Ni/Cu Substrate

  • Jung, Daesung;Song, Wooseok;Lee, Seung Youb;Kim, Yooseok;Cha, Myoung-Jun;Cho, Jumi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.618-618
    • /
    • 2013
  • Graphene is only one atom thick planar sheet of sp2-bonded carbon atoms arranged in a honeycomb crystal lattice, which has flexible and transparent characteristics with extremely high mobility. These noteworthy properties of graphene have given various applicable opportunities as electrode and/or channel for various flexible devices via suitable physical and chemical modifications. In this work, for the development of all-graphene devices, we performed to synthesize alternately patterned structure of mono- and multi-layer graphene by using the patterned Ni film on Cu foil, having much different carbon solid solubilities. Depending on the process temperature, Ni film thickness, introducing occasion of methane and gas ratio of CH4/H2, the thickness and width of the multi-layer graphene were considerably changed, while the formation of monolayer graphene on just Cu foil was not seriously influenced. Based on the alternately patterned structure of mono- and multi-layer graphene as a channel and electrode, respectively, the flexible TFT (thin film transistor) on SiO2/Si substrate was fabricated by simple transfer and O2 plasma etching process, and the I-V characteristics were measured. As comparing the change of resistance for bending radius and the stability for a various number of repeated bending, we could confirm that multi-layer graphene electrode is better than Au/Ti electrode for flexible applications.

  • PDF

Micro Channel Forming with Ultra Thin Metal Foil (초미세 금속 박판의 마이크로 채널 포밍)

  • Joo, Byung-Yun;Oh, Soo-Ik;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.157-163
    • /
    • 2006
  • Our research dealt with micro fabrication using micro forming process. The goal of the research was to establish the limit of forming process concerning the size of forming material and formed shape. Flat-rolled ultra thin metallic foils of pure copper(3.0 and $1.0{\mu}m$ in thickness)and stainless steel($2.5{\mu}m$ in thickness) were used for forming material. We obtained the various shapes of micro channels as using designed forming process. $12-14{\mu}m$ wide and $9{\mu}m$ deep channels were made on $3.0{\mu}m$ thick foil and $6{\mu}m$ wide and $3{\mu}m$deep channels were made on $1.0{\mu}m$ thick foil. Si wafer die for forming was fabricated by using etching technique. And the relation of etching time and die dimension was investigated for fabricating precisely die groove. For the forming, die and metal foil were vacuum packed and the forming was conducted with a cold isostatic press. The formed channels were examined in terms of their dimension, surface qualities and potential for defects. Base on the examinations, formability of ultra thin metallic foil was also discussed. Finally, we compared the forming result with simulation. The result of research showed that metal forming technology is promising to produce micro parts.

Quantitative observation of co-current stratified two-phase flow in a horizontal rectangular channel

  • Lee, Seungtae;Euh, Dong-Jin;Kim, Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.267-283
    • /
    • 2015
  • The main objective of this study is to investigate experimentally the two-phase flow characteristics in terms of the direct contact condensation of a steam-water stratified flow in a horizontal rectangular channel. Experiments were performed for both air-water and steam-water flows with a cocurrent flow configuration. This work presents the local temperature and velocity distributions in a water layer as well as the interfacial characteristics of both condensing and noncondensing fluid flows. The gas superficial velocity varied from 1.2 m/s to 2.0 m/s for air and from 1.2 m/s to 2.8 m/s for steam under a fixed inlet water superficial velocity of 0.025 m/s. Some advanced measurement methods have been applied to measure the local characteristics of the water layer thickness, temperature, and velocity fields in a horizontal stratified flow. The instantaneous velocity and temperature fields inside the water layer were measured using laser-induced fluorescence and particle image velocimetry, respectively. In addition, the water layer thickness was measured through an ultrasonic method.