• Title/Summary/Keyword: Channel Structure

Search Result 2,015, Processing Time 0.041 seconds

Comparison of Hole Mobility Characteristics of Single Channel and Dual Channel Si/SiGe Structure (단일채널 Strained Si/SiGe 구조와 이중채널 Strained Si/SiGe 구조의 이동도 특성 비교)

  • Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.113-114
    • /
    • 2007
  • Hole mobility characteristics of single surface channel and dual channel Si/SiGe structure are compared, where the former one consists of a relaxed SiGe buffer layer and a tensile strained Si layer on top, and for dual channel structure a compressively strained SiGe layer is inserted between them. Due to the difference of hole mobility enhancement factors of layers between them, hole mobility characteristics with respect to the Si cap thickness shows the opposite tend. Hole mobility increases with thicker Si cap for single channel structure, whereas it decreases with thicker Si cap for dual channel structure.

  • PDF

Improvement of Current Path by Using Ferroelectric Material in 3D NAND Flash Memory (3D NAND Flash Memory에 Ferroelectric Material을 사용한 Current Path 개선)

  • Jihwan Lee;Jaewoo Lee;Myounggon Kang
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.399-404
    • /
    • 2023
  • In this paper, we analyzed the current path in the O/N/O (Oxide/Nitride/Oxide) structure of 3D NAND Flash memory and in the O/N/F (Oxide/Nitride/Ferroelectric) structure where the blocking oxide is replaced by a ferroelectric. In the O/N/O structure, when Vread is applied, a current path is formed on the backside of the channel due to the E-fields of neighboring cells. In contrast, the O/N/F structure exhibits a current path formed on the front side due to the polarization of the ferroelectric material, causing electrons to move toward the channel front. Additionally, we performed an examination of device characteristics considering channel thickness and channel length. The analysis results showed that the front electron current density in the O/N/F structure increased by 2.8 times compared to the O/N/O structure, and the front electron current density ratio of the O/N/F structure was 17.7% higher. Therefore, the front current path is formed more effectively in the O/N/F structure than in the O/N/O structure.

Electrical Characteristics of Novel LIGBT with p Channel Gate and p+ Ring at Reverse Channel Structure (p+링과 p 채널 게이트를 갖는 역채널 LIGBT의 전기적인 특성)

  • Gang, Lee-Gu;Seong, Man-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.99-104
    • /
    • 2002
  • lateral insulated gate bipolar transistors(LIGBTs) are extensively used in high voltage power IC application due to their low forward voltage drops. One of the main disadvantages of the LIGBT is its scow switching speed when compared to the LDMOSFET. And the LIGBT with reverse channel structure is lower current capability than the conventional LIGBT at the forward conduction mode. In this paper, the LIGBT which included p+ ring and p-channel gate is presented at the reverie channel structure. The presented LIGBT structure is proposed to suppress the latch up, efficiently and to improve the turn off time. It is shown to improve the current capability too. It is verified 2-D simulator, MEDICI. It is shown that the latch up current of new LIGBT is 10 times than that of the conventional LIGBT Additionally, it is shown that the turn off characteristics of the proposed LIGBT is i times than that of the conventional LIGBT. It is net presented the tail current of turn off characteristics at the proposed structure. And the presented LIGBT is not n+ buffer layer because it includes p channel gate and p+ ring.

Optimization of Channel Capacity in MIMO Systems

  • Pham Van-Su;Le Minh Tuan;Yoon Giwan
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.172-175
    • /
    • 2005
  • In this paper, a new method to get the optimum channel capacity of a Multiple-Input Multiple­Output (MIMO) system is presented. The proposed method exploits the diagonal structure of channel matrix to maximize the channel capacity. The diagonal format of the channel matrix is formed by multiplying the transmitted signal with the pre-compensated channel PCC) matrix. Numerical simulations show that the proposed method exploiting the diagonal structure of channel matrix could significantly increase the system capacity compared with the system without applying the diagonal structure of channel matrix.

Effects of Channel Structure on the Quality Competition of Exclusively Distributed Products

  • Kang, Yeong Seon
    • Asia Marketing Journal
    • /
    • v.19 no.4
    • /
    • pp.37-59
    • /
    • 2018
  • This study investigates the effects of the distribution channel structure on quality decisions under duopoly competition. I considers a set-up in which two retailers compete on product quality and retail price. In the set-up, the integrated retailer has the power to determine the quality of its exclusive product, while the decentralized retailer does not. For the decentralized retailer, the supplier determines product quality. I find that asymmetric pairs of a decentralized channel by one retailer and an integrated channel by the other retailer can be a Nash equilibrium in a simultaneous-channel-choice model. The two retailers select different levels of quality, and this quality competition benefits retailers by softening price competition. In a sequential-channel-choice model, I find that the leader can obtain a first-mover advantage. From the perspective of the supplier, which can decide the distribution channel structure and level of quality, both suppliers choose the decentralized channel in equilibrium.

A New Approach to Get the Optimum Channel Capacity in MIMO Systems

  • Su, Pham-Van;Tuan, Le-Minh;Giwan Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.317-319
    • /
    • 2002
  • In this paper, a new method to get the optimum channel capacity of a Multiple-Input Multiple-Output (MIMO) system is presented. The proposed method exploits the diagonal structure o f channel matrix in order to maximize the channel capacity. The diagonal format of the channel matrix is formed by multiplying the transmitted signal with the precompensated channel (PCC) matrix. Numerical simulations show that the proposed method exploiting the diagonal structure of channel matrix could significantly increase the system capacity compared with the system without applying the diagonal structure of channel matrix.

  • PDF

On eBay's Fee Structure from a Channel Coordination Perspective

  • Chen, Jen-Ming;Cheng, Hung-Liang;Chien, Mei-Chen
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.97-106
    • /
    • 2010
  • Can eBay.com's fee structure coordinate the channel? It's a critical strategic problem in e-commerce operations and an interesting research hypothesis as well. eBay's fees include three parts: monthly subscription fee, insertion fee, and final value fee (i.e., a revenue sharing portion), which represent a generic form of revenue sharing fee structure between the retailer and the vendor in a supply chain. This research deals with such a channel consisting of a price-setting vendor who sells products through eBay's marketplace exclusively to the end customers. The up- and down-stream channel relationship is consignment-based revenue sharing. We use a game-theoretic approach with assumption of the retailer (i.e., eBay.com) being a Stackelberg-leader and the vendor being a follower. The Stackelberg-leader decides on the terms of revenue sharing contract (i.e., fee structure), and the follower (vendor) decides on how many units to sell and the items' selling price. This study formulates several profit-maximization models by considering the effects of the retail price on the demand function. Under such settings, we show that eBay's fee structure can improve the channel efficiency; yet it cannot coordinate the channel optimally.

An Escalator Structure-Based Adaptation Algorithm for Channel Equalization with Eigenvalue Spread-Independency

  • Kim, Nam-Yong
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.93-96
    • /
    • 2004
  • In this paper we introduce a new escalator(ESC) structure-based adaptation algorithm. The proposed algorithm is independent of eigenvalues spread ratio(ESR) of channel and has faster convergence speed than that of the conventional ESC algorithms. This algorithm combines the fast adaptation ability of least square methods and the orthogonalization property of the ESC structure. From the simulation results the proposed algorithm shows superior convergence speed and no slowing down of convergence speed when we increase the ESR of the channel.

A New SC-FDE Transmission Structure for Coping with Narrow Band Jammers and Reducing Pilot Overhead (협대역 재머 대응과 파일럿 오버헤드 감소를 위한 새로운 SC-FDE 전송구조)

  • Joo, So-Young;Choi, Jeung-Won;Kim, Dong-Hyun;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.981-987
    • /
    • 2019
  • In this paper, we propose a new SC-FDE (single carrier frequency domain equalization) structure to cope with narrow band interference signals or jammers and reduce pilot overhead. The conventional SC-FDE structure has a problem that the receiver performance degrades severely due to difficulty in time-domain channel estimation when narrow band jammers exist. In addition, the spectral efficiency is lowered by transmitting pilot at every SC-FDE block to estimate channel response. In order to overcome those problems, the proposed structure is devised to estimate frequency domain channel directly without time domain channel estimation. To reduce the pilot overhead, several data blocks are transmitted between two pilots. The channel estimate of each data block is found through linear interpolation of two channel estimates at two pilots. By performing frequency domain channel equalization using this channel estimate, the distortion by the channel is well compensated when narrow band jammers exist. The performance of the proposed structure is confirmed by computer simulation.

Device Design of Vertical Nanowire MOSFET to Reduce Short Channel Effect (단채널 현상을 줄이기 위한 수직형 나노와이어 MOSFET 소자설계)

  • Kim, Hui-jin;Choi, Eun-ji;Shin, Kang-hyun;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.879-882
    • /
    • 2015
  • In this work, we have analyzed the characteristics of vertical nanowire GAA MOSFET according to channel width and the type of channel doping through the simulation. First, we compared and analyzed the characteristics of designed structures which have tilted shapes that ends of drains are fixed as 20nm and ends of sources are 30nm, 50nm, 80nm and 110nm. Second, we designed the rectangular structure which has uniform width of drain, channel and source as 50nm. We used it as a standard and designed trapezoidal structure which is tilted so that the end of drain became 20nm and reverse trapezoidal structure which is tilted so that the end of source became 20nm. We compared and analyzed the characteristic of above three structures. For the last, we used the rectangular structure, divided its channel as five parts and changed the type of the five parts of doping concentration variously. In the first simulation, when the channel width is the shortest, in the second, when the structure is trapezoid, in the third, when the center of channel is high doped show the best characteristics.

  • PDF