This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.
International Journal of Fuzzy Logic and Intelligent Systems
/
제16권2호
/
pp.131-139
/
2016
Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.
Dried vegetables, white ginseng and spices, which were exposed to gamma and electron beam irradiation, were used in a detection study by measuring their starch content and viscosity change. The samples tested showed different levels of starch content(15.64~60.86%), which was not directly proportional to the viscosity of the samples. The correlation coefficients between irradiation dose and viscosity change were lower in the samples, such as cabbage, carrot, clean vegetable(chunggyungchae), garlic, mushroom, green onion, and red pepper, while some higher coefficients were found in ginger(R2=0.9271), white ginseng (R2=0.6223) and onion (R2=0.7909). Thus, dried ginger and white ginseng were selected to be used for a detection of irradiated samples using specific parameters(threshold values). Specific parameter for the nonirradiated ginger and ginseng were 13.31 and 13.93, respectively. On the other hand, gamma and electron beam irradiated samples at 2.5 kGy, the lowest dose for a commercial purpose, showed decreased values, 11.92 and 11.15 in ginger, and moreover 4.40 and 5.10 in ginseng. It is expected that a proportional decrease in a specific parameter with the absorbed doses will be a potentially useful index for detecting whether starchy foods have been irradiated or not.
본 논문에서는 감시 카메라 환경에서 발생할 수 있는 군중의 비정상 행동 검출 방법을 제안한다. 군중들의 비정상 행동을 산발적으로 퍼지면서 뛰는 행동, 한쪽 방향으로 갑자기 뛰는 행동 두 가지로 정의하였다. 이를 검출하기 위하여 영상에서 움직임 벡터를 추출하여 군중의 비정상 행동 검출에 적합한 서술자 MHOF(Multi-scale Histogram of Optical Flow)와 DCHOF(Directional Change Histogram of Optical Flow)제안하였으며, 이를 이진 분류기인 SVM(Support Vector Machine)을 이용하여 검출하였다. 제안한 방법은 공개 데이터셋인 UMN 데이터와 PETS 2009 데이터를 이용하여 성능을 평가하였고 다른 방법론과의 비교를 통해 제안하는 알고리즘의 우수성을 입증하였다.
In this paper, we have developed a new fault detection method based on vibration signal for rotor machinery. Generally, many methods related to detection of rotor fault exist and more advanced methods are continuously developing past several years. However, there are some problems with existing methods. Oftentimes, the accuracy of fault detection is affected by vibration signal change due to change of operating environment since the diagnostic model for rotor machinery is built by the data obtained from the system. To settle a this problems, we build a rotor diagnostic model by using feature residual based on vibration signal. To prove the algorithm's performance, a comparison between proposed method and the most used method on the rotor machinery was conducted. The experimental results demonstrate that the new approach can enhance and keeps the accuracy of fault detection exactly although the algorithm was applied to various systems.
본 논문에서는 효율적인 장면 전환 검출을 위하여 압축된 MPEG 비디오 시퀀스로부터 특징 요소를 추출하는 방법을 제안한다. 제안한 방법은 압축된 MPEG 비디오 시퀀스로부터 일부만을 복원하여 각 DCT 블록의 주요 5개의 AC 계수를 추출하고, 이로부터 각 블록의 에지 정보를 구하여 에지 영상을 얻는다. 제안된 에지 추출 방법에서는 기존의 DC 계수를 이용하여 에지를 검출하는 방법에서 생기는 블러링 (blurring) 문제를 해결할 수 있다. 또한 제안된 방법에 의해 얻어진 에지 영상을 각 프레임의 내용 정보를 포함하고 있으므로 장면 전환 검출뿐만 아니라 내용기반 (content-based) 검색 등에도 효과적으로 이용될 수 있다. 실험 결과, AC 계수를 이용하여 구한 에지 영상은 DC 계수를 이용하여 구한 에지 방법보다 원 영상의 정보를 더 잘 나타내었으며 장면 전환 검출에 효과적으로 적용될 수 있음을 확인하였다.
배경 모델과 배경 차분화로 구성되어 있는 전경객체 추출은 다양한 컴퓨터 비젼 응용에서 중요한 기능이다. 조명 변화를 고려하지 않은 기존 방법들은 급격한 조명 변화에서는 성능이 저하된다. 본 레터에서는 이 문제를 해결할 수 있는 조명 변화에 강인한 배경 모델링 방법을 제안한다. 제안 방법은 다른 적응률을 가진 두 개의 배경 모델을 사용함으로써 조명 조건에 신속하게 적응할 수 있다. 본 논문의 제안 방법은 non-parametric 기법으로서 실험에서는 기존 non-parametric 기법들보다 우수한 성능 및 낮은 복잡도를 보여줌을 증명하였다.
본 논문에서는 H.264 비디오 스트림의 히스토그램 정보와 헤더 정보를 이용한 장면 전환 검출에 관한 연구이다. 비디오 데이터에서 장면의 변화를 검출하는 가장 일반적인 방법으로 히스토그램을 이용하고 있다. 그러나 히스토그램 정보를 이용하기 위해서는 비디오 데이터를 압축 해제 하여 각각의 장면에 대한 히스토그램 차이를 계산하기 때문에 연산 시간이 많이 소요된다. 반면에 H.264 비디오 헤더 정보를 이용하면 이러한 연산의 과정 없이 실시간 검출이 가능하다. 히스토그램을 이용하여 장면 전환을 검출하고 헤더 정보를 함께 이용하였을 때 동일한 프리시전 및 리콜을 수행하면서 검색 속도에서 향상을 확인할 수 있었다.
This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.
사장교가 장경간으로 시공됨에 따라 대형화 되고 지진하중, 풍하중 및 차량하중 등 동적 하중에 의해 유발되는 진동현상에 취약한 단점이 나타난다. 이러한 하중 등에 의해 발생된 구조 손상은 구조물의 진동모드 특성에 영향을 미치게 된다. 기존의 정밀안전진단 기술을 이용하여 사장교의 구조 손상을 검색하고 평가하는 것은 상당한 비용과 시간이 소요될 뿐만 아니라 전체적인 구조거동 특성의 변화를 발견하기 어려울 것이다. 따라서 본 연구는 사장교에 대하여 구조손상 전의 진동모드 특성치와 구조손상 후의 진동모드 특성치를 이용하여 구조거동 특성의 변화를 검토하고 구조손상 검색을 수행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.