Graphical and numerical methods for checking the assumption of proportional hazards of Cox model for censored survival data are discussed. The strenths and weaknessess of several goodness of fit tests for the propotional hazards for the two-sample problem are evaluated with Monte Carlo simulations, and the tests of Schoenfeld (1980), Andersen (1982), Wei (1984), and Gill and Schumacher (1987) are considered. The goodness of fit methods are illustrated with the survival data of patients who had chronic liver disease and had been treated with the endoscopy injection sclerotheraphy. Two other examples of data known to have nonpropotional hazards are also used in the illustration.
This paper presents optimum simple step-stress accelerated life test plans for the case where the test process is observed periodically at intervals of the same length. Two types of failure data, periodically observed complete data and periodically observed censored data, are considered. An exponential life distribution with a mean that is a log-linear function of stress, and a cumulative exposure model for the effect of changing stress are assumed. For each type of data, the optimum test plan which minimizes the asymptotic variance of the maximum likelihood estimator of the mean life at a design stress is obtained and its behaviors are studied.
Journal of the Korean Data and Information Science Society
/
v.28
no.3
/
pp.659-668
/
2017
The inverse Weibull distribution (IWD) can be readily applied to a wide range of situations including applications in medicines, reliability and ecology. It is generally known that the lifetimes of test items may not be recorded exactly. In this paper, therefore, we consider the maximum likelihood estimation (MLE) and Bayes estimation of the entropy of a IWD under generalized progressive hybrid censoring (GPHC) scheme. It is observed that the MLE of the entropy cannot be obtained in closed form, so we have to solve two non-linear equations simultaneously. Further, the Bayes estimators for the entropy of IWD based on squared error loss function (SELF), precautionary loss function (PLF), and linex loss function (LLF) are derived. Since the Bayes estimators cannot be obtained in closed form, we derive the Bayes estimates by revoking the Tierney and Kadane approximate method. We carried out Monte Carlo simulations to compare the classical and Bayes estimators. In addition, two real data sets based on GPHC scheme have been also analysed for illustrative purposes.
Communications for Statistical Applications and Methods
/
v.20
no.4
/
pp.283-290
/
2013
Subjects can experience two types of recurrent events in a longitudinal study. In addition, there may exist intermittent dropouts that results in repeated observation gaps during which no recurrent events are observed. Therefore, theses periods are regarded as non-risk status. In this paper, we consider a special case where information on the observation gap is incomplete, that is, the termination time of observation gap is not available while the starting time is known. For a statistical inference, incomplete termination time is incorporated in terms of interval-censored data and estimated with two approaches. A shared frailty effect is also employed for the association between two recurrent events. An EM algorithm is applied to recover unknown termination times as well as frailty effect. We apply the suggested method to young drivers' convictions data with several suspensions.
In this paper, two estimation methods(least square estimation and maximum likelihood estimation) were compared for Weibull distribution and Type I censoring. Data obtained by Monte Carlo simulation were analyzed using two estimation methods and analysis results were compared by MSE(Mean Squared Error). Comparison results show that maximum likelihood estimator is better for censored data and complete data with more than 30 samples and least square estimator is better for small size complete data(less than and equal to 20 samples).
The simplest and the most important distribution in survival analysis is exponential distribution. Koziol and Green (1976) derived Cram$\acute{e}$r-von Mises statistic's randomly censored version based on the Kaplan-Meier product limit estimate of the distribution function; however, it could not be practical for a real data set since the statistic is for testing a simple goodness of fit hypothesis. We generalized it to the composite hypothesis for exponentiality with an unknown scale parameter. We also considered the classical Kolmogorov-Smirnov statistic and generalized it by the exact same way. The two statistics are compared through a simulation study. As a result, we can see that the generalized Koziol-Green statistic has better power in most of the alternative distributions considered.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.20
no.1
/
pp.1-11
/
2002
This study set up a purpose in the efficient utilization of security target objects. This purpose is the following: Firstly, this study analyzed problem about deleted areas for security described on aerial photography image. Secondly, this study made clustering and labeling to recognize censored areas of image. Finally, this study tried to maximize various utilizability of digital image data through postprocessing algorithm. Based on these courses, the results of this study appeared that brightness value of image increased depending on topography and quantities of topographic features. It was estimated that these was able to utilized by useful estimative data in judging information of topography and topographic features included in the total image. Besides, in the image recognition and postprocessing, the better result value was not elicited than in a mountainous region. Because it was included that a lots of topography and topographic features was similarly recognized with the process for deletion of the existing security target objects in urban and suburb region. This result appeared that the topography and quantities of topographic features absolutely affected the recognition and processing of image.
In Korea, snow damage has been happened in the region with no snowfalls in history. Also, casual damage was caused by heavy snow. Therefore, policy about the Natural Disaster Reduction Comprehensive Plan has been changed to include the mitigation measures of snow damage. However, since heavy snow damage was not frequent, studies on snowfall have not been conducted in different points. The characteristics of snow data commonly are not same to the rainfall data. For example, some parts of the southern coastal areas are snowless during the year, so there is often no values or zero values among the annual maximum daily snow accumulation. The characteristics of this type of data is similar to the censored data. Indeed, Busan observation sites have more than 36% of no data or zero data. Despite of the different characteristics, the frequency analysis for snow data has been implemented according to the procedures for rainfall data. The frequency analysis could be implemented in both way to include the zero data or exclude the zero data. The fitness of both results would not be high enough to represent the real data shape. Therefore, in this study, a methodology for selecting a probability density function was suggested considering the characteristics of snow data in Korea. A method to select probability density function using conditional joint probability distribution was proposed. As a result, fitness from the proposed method was higher than the conventional methods. This shows that the conventional methods (includes 0 or excludes 0) overestimated snow depth. The results of this study can affect the design standards of buildings and also contribute to the establishment of measures to reduce snow damage.
Proceedings of the Korean Society for Bioinformatics Conference
/
2005.09a
/
pp.357-360
/
2005
In this paper we consider the well-known semiparametric proportional hazards (PH) models for survival analysis. These models are usually used with few covariates and many observations (subjects). But, for a typical setting of gene expression data from DNA microarray, we need to consider the case where the number of covariates p exceeds the number of samples n. For a given vector of response values which are times to event (death or censored times) and p gene expressions (covariates), we address the issue of how to reduce the dimension by selecting the significant genes. This approach enable us to estimate the survival curve when n < < p. In our approach, rather than fixing the number of selected genes, we will assign a prior distribution to this number. The approach creates additional flexibility by allowing the imposition of constraints, such as bounding the dimension via a prior, which in effect works as a penalty. To implement our methodology, we use a Markov Chain Monte Carlo (MCMC) method. We demonstrate the use of the methodology to diffuse large B-cell lymphoma (DLBCL) complementary DNA(cDNA) data.
Proceedings of the Korean Statistical Society Conference
/
2000.11a
/
pp.193-200
/
2000
Modelling the dependence via random effects in censored multivariate survival data has recently received considerable attention in the biomedical literature. The random effects models model not only the conditional survival times but also the conditional hazard rate. Systematic likelihood inference for the models with random effects is possible using Lee and Nelder's (1996) hierarchical-likelihood (h-likelihood). The purpose of this presentation is to introduce Ha et al.'s (2000a,b) inferential methods for the random effects models via the h-likelihood, which provide a conceptually simple, numerically efficient and reliable inferential procedures.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.