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ABSTRACT

Graphical and numerical methods for checking the assumption of
proportional hazards of Cox model for censored survival data are dis-
cussed. The strengths and weaknessess of several goodness of fit tests for
the proportional hazards for the two-sample problem are evaluated with
Monte Carlo simulations, and the tests of Schoenfeld (1980), Andersen
(1982), Wei (1984), and Gill and Schumacher (1987) are considered.
The goodness of fit methods are illustrated with the survival data of
patients who had chronic liver disease and had been treated with the
endoscopy injection sclerotherapy. Two other examples of data known
to have nonproportional hazards are also used in the illustration.
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1. INTRODUCTION

The use of proportional hazards regression of Cox (1972) in the medical
literature has grown considerably in the last two decades. The Cox model is
particularly useful in examining treatment comparisons based on the time to
some event of interest while adjusting for the effects of concommitant variables.
The so-called prognostic variables that are significantly associated with the
survival are identified with the Cox model, and the analysis methodology of
Cox can handle the censored data which are frequent in medical researches.

Checking of model assumptions is an important aspect of Cox regression
analyses, but surprisingly little attention has been paid to this problem; few
articles reporting on the application of Cox model on survival data actually
perform goodness of fit tests of assumptions. It is relatively easy to detect
from diagnostic graphs very serious deviations in the proportional hazards as-
sumption. But it is generally difficult to determine, with graphical methods
alone, whether some discrepancies from the proportionality indicated by the
plots are so important that the proportional hazards Cox model must be re-
jected. In such situations, concrete test statistics are needed to support the
graphical investigations. Several numerical methods have been suggested in
the last decade. This paper reviews and discusses graphical and numerical
methods that have been proposed for assessing the Cox model assumption.

Survival data of patients with chronic liver disease and two other examples
of medical data are described in section 2. Exploratory analyses with sur-
vival and hazard functions are done in section 3. Methods for checking Cox
model assumption are set in section 4. Application to medical examples and
the results from a Monte Carlo study are described in section 5, and further

discussions are given in section 6.

2. MEDICAL DATA

The strengths and weaknesses of various goodness of fit test statistics are

best illustrated by examples of data. Therefore, three sets of medical data are
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used as examples among which two sets are already known in the literature
to have nonproportionality of hazards by diagnostic graphs or by a certain

goodness of fit test.

The first data set consisted of 133 patients with chronic liver disease who
were treated at the Saint Mary’s Hospital, Daejun, Korea, from July, 1986 to
August, 1992. Since variceal bleeding remained a major cause of death among
those patients, obliteration of varicose would seem to be a logical preventive
measure to decrease morbidity and mortality, and thus the endoscopic injec-
tion sclerotherapy (EIS) was initiated for this purpose on them. Of the 133
patients aged from 19 to 64, 75 had the EIS by a planned regimen (regular EIS
group), and 58 had the EIS whenever variceal hemorrhage occurred (episodic
EIS group). We reviewed data retrospectively in order to determine whether
there was any beneficial effect of the sclerotherapy by a planned regimen com-
pared to the episodic management of the bleeding. We also wanted to identify
important prognostic factors, or covariates, that affected survival.

Patients had pretreatment liver function tests that included measurements
of total serum bilirubin (BILI), globulin (GLOB), serum albumin (ALB),
fetoprotein (AFP), prothrombin time (PT) and direct serum bilirubin (DIR).

AFP was recoded as 0 if a value was less than 20mg/dl and as 1 otherwise.

-

Log transformed value of BILI(mg/dl) was used. The severity of the liver
disease (PSCORE) was graded using a numerical scoring system modified from
Pugh and co-workers (1973), and it was a summarization of patient’s status of
encephalopathy, ascites, BILI, ALB and PT. We also included age (AGE) for
its predictive significance.

The second data set consisted of patients with gastric carcinoma treated
either by chemotherapy alone or chemotherapy plus radiation. The data set
was used by Carter et al. (1983) as an example of nonproportional hazards.

The third data set was used by Wei (1984), which was a part of data given
in Hoel (1972). Two groups of male mice were given 300 rads of radiation and
placed, respectively, in a germ-free and in a normal environment. Effects of

two different environments were compared on developing thymic lymphoma.
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3. EXPLORATORY ANALYSES WITH SURVIVAL
AND HAZARD FUNCTIONS

Let 7' represent the random survival time with survival function

S(t) = exp[-jﬁtx(u)du],. (3.1)

where A(?) is the hazard function of time ¢. By the definition of S(t) = Pr(T >

t), equation (3.1) is equivalent to the definition of the hazard function,
Mﬂzy%h*m@gT<t+ﬂT>Q. (3.2)

Thus, A(t) is the instantaneous rate of death immediately after ¢, given survival
until £, and conveys a precise information concerning the intensity with which
deaths occur through time. For this reason, the hazard function plays an
important role in the survival modeling.

Survival times may be censored for some patients whose death has not yet
occurred when the study is terminated or who are lost during the study. It
will be assumed throughout that death and censoring are determined by an
independent mechanism. The diagnostic plots of survival and hazard functions
are basic tools in survival analysis. The method of Kaplan-Meier (1958) can
be used to estimate the survival function, S(t), for the censored data. Figure
1 shows the Kaplan-Meier survival functions for the two treatment groups
of chronic liver desease data. The log rank test (Peto and Peto, 1972) for
the equality of two survival curves is nonsignificant (y? = 2.563, d.f. = 1,
p = 0.11). Thus, no beneficial effect of regular EIS group over episodic EIS
group 1s recognized.

Consider now the problem of estimating hazard functions. An examination
of hazard functions before testing equality of survival is sometimes important,
because the log rank test is locally most powerful against proportional hazards
alternatives. Although the test statistic may still be used when the propor-
tional hazards assumption does not hold, it will not be very sensitive in detect-

ing survival differences when they exist, particularly if the hazard functions
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cross (Pepe and Fleming, 1989). The estimation procedure, however, makes
the hazard function difficult to plot directly. An easiest way is to assume that
the hazard function is constant over fixed intervals of 4 months, say. (For a
shorter interval, the estimated hazard functions become too variable to deci-
pher its pattern.) If d; is the total number of deaths and B; is the total time
spent by patients in the zth interval, then the estimated hazard function is
d;/B; (Kalbfleisch and Prentice, 1980, p.16). The estimated hazard functions
are plotted for the two treatment groups of chronic liver disease data in Figure
2, and they show a fluctuating pattern.

Nonproportional hazards or unusual hazard patterns are sometimes re-
vealed by hazard plots (Anderson and Senthilselvan, 1982; Gore et al., 1984),
but these two studies are of large data sets. Normally the estimated hazard
functions from small to moderate data sets are invariably fluctuating or un-
stable, and thus one cannot obtain a useful information concerning the shapes
or the proportionality of hazard functions. For the chronic liver disease data,

the estimated hazard functions of Figure 2 do not convey any information.

4. ASSESSING THE ASSUMPTION OF
PROPORTIONAL HAZARDS

In this section we discuss graphical and numerical methods of examining the
validity of the assumptions of proportional hazard functions. Two commonly
used graphical techniques will be considered. As for numerical techniques for
checking the adequacy of Cox proportional hazards model, Schoenfeld (1980),
Andersen (1982), Wei (1984), and Gill and Schumacher (1987) have proposed.
There is also a method proposed by Moreau, O’Quigley and Mesbah (1985).
However, the statistic suggested by Moreau et al. is the same as Schoenfeld’s
(1980) for the two-sample problem, and hence this method is not explored
further.

4.1. Graphical methods.

383
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The regression model of Cox (1972) assumes the hazard function for a
patient with covariate vector z = (z1,...,2)" to be A(¢;z) = Ao(2) exp(ﬁ’z),
where A\o(t), an unspecified function of time, is in fact the underlying hazard
at z = 0, and 3 is a vector of k unknown regression coefficients. Cox model
implies the proportional hazards for two patients with covariate vectors z,
and z;, and assumes that covariates have a multiplicative effect on the hazard
function.

Suppose that k + 1 covariates are considered and the proportional hazards
assumption holds for the first k covariates z = (zy,...,2;), but the propor-
tional hazards assumption is tested for z;,;. For an indicator variable ZE+1,
the proportional hazards assumption implies that the hazard function may be
formulated as

A(t; 2) = do(t) exp(6k+lzk+1) exp (/3’2>-
And, for a quantitative variable zyy1, we first divide the possible values of z;4
into p strata and accordingly the patients, depending on their values of z,;.
By using the strata model of Kalbfleisch and Prentice (1980, Chapter 4), the

hazard function for a patient in sth stratum is given by

As(t;2) = /\OS(t)exp(,H’z) s=1,...,p,

where the underlying hazard functions, Aoj(t),- -, Aop(t), are allowed to be
arbitrary and are completely unrelated. Then, when the assumption of pro-
portional hazards holds for the variable z;yy, plotting the logarithm of the

cumulative underlying hazard in each group (referred also as stratum),

t
log Ay(t) = log/ Aos(u)du + Bz, s=1,...,p,
0

versus ¢ yields curves with constant differences (Kay, 1977; Kalbfleisch and
Prentice, 1980). Methods for the estimation of A,(t) were proposed by Cox
(1972), Breslow (1972, 1974) and Kalbfleisch and Prentice (1973), and we have

used Breslow’s suggestion which is given by

-
A1) = —
t,X:St 2_jeR(t,) €XP (ﬁ’%’)
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where /3 1s the maximum partial likelithood estimator of 3, z; is the covari-
ate vector of patient j, #;’s are the distinct survival times, R(f;) is the risk
set of individuals at time ] and é; is either 1 for death or 0 for censor-
ing. Since A (t) = —logS,(t), log cumulative hazard is also referred as
log (— 1og(53(t;2)), where the average values of k covariates of the group, z,
are normally used in the plotting. Plots of log cumulative hazards, e.g. by
PROC LIFETEST of SAS, are the most widely used diagnostic graphs for

checking the proportional hazards in survival analysis.

Another graphical method for checking the proportional hazards assump-
tion, which is suggested by Andersen (1982), is to plot the cumulative hazard of
group 1 versus that of group 2. Under proportionality, that is, if A;(¢) = 6A,(¢)
holds for some constant 6, the plot of Ay(¢) versus Ay(¢) should yield approxi-

mately a straight line through the origin.

Now we will examine the two above mentioned diagnostic graphs with ex-
amples of data. Figure 3 shows plots of log cumulative hazard functions of
chronic liver disease data, where each covariate of PSCORE, DIR, ALB, and
also the treatment (GROUP) is dichotomized into two groups. For the chronic
liver disease data, approximately constant differences over time are observed
for PSCORE, DIR and ALB. But, for the covariate GROUP indicating two
treatments, curves are not parallel. Also nonparallel curves for the treatment
groups are observed for the examples of gastric carcinoma and thymic lym-
phoma data. Log cumulative hazard curves are crossing for gastric carcinoma
data. For thymic lymphoma data, two treatment groups initially have the

same survival experiences but later their curves are diverging.

As for another graphical method, Figure 4 provides a plot of A;(t) versus
As(t) for those three graphs, for which nonproportional hazards are suspected.
Plots of two examples of gastric carcinoma and thymic lymphoma data are
clearly nonlinear, and the convexity indicates the hazard ratio of the first to
the second group 1s increasing. But for chronic liver disease data, nonlinearity
is not apparent for GROUP. Sometimes graphical techniques are considered to

be rather subjective and a numerical test is required to support the graphical
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investigations in certain cases.
4.2. Numerical methods.

Four numerical methods of Schoenfeld (1980), Andersen (1982), Wei (1984),
and Gill and Schumacher (1987) for testing the null hypothesis of proportional
hazards are compared and applied to the patient data of chronic liver disease.

Jox (1972) introduced a dummy time-dependent covariate as a way of checking
the proportional hazards assumption. This method, however, is restricted to
testing against a specific alternative and thus we will not discuss this particular
testing henceforth.

Schoenfeld (1980) extended the usual chi-square goodness of fit test for
the proportional hazards model. To compute a goodness of fit statistic, one
first divides time axis into r intervals [bo,b1),...,[b—1,b,) with by = 0 and
b, = oco. If there is a single covariate, the range of a covariate is subdivided into
Wi, ..., W, sets and then the Cartesian products of an interval on the covariate
axis and a time interval, Cy; = W, x [bj_1,b;),s = 1,....p, j = 1,...,ris
made. Let D, be the set of identifiers of individuals who are observed to fail
in time interval [b;_y, ;) and for ¢ € D;,t; be the survival time of an ith
individual. In each C};,d,; is the observed number of deaths whose covariate
values are in W, and whose survival times are in [b;_1,b;), and e,; is the
expected number of deaths conditional upon the risk sets at each survival

time. If 8 were known, then

o >icr(y) Is(2:) exp (ﬂ’zi)
e IEZD; 2icR(t) ©XP (/3’21')

where z; is the covariate of ith individual and I,(z;) is the indicator function
of W,. Usually 3 is estimated by the maximum partial likelihood method.
An argument similar to the partial likelihood of Cox (1972, 1975) is used to
derive the conditional mean of d,;. If the proportional hazard assumption does
not hold, then for a certain interval the effect of a covariate will be greater

than others. When a single covariate taking the values 0 or 1 is tested for the
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assumption of proportional hazards, the following chi-square statistic,

Q=% S (s — exs) fes

7=1s=1

has an asymptotic x? distribution with r — 1 degrees of freedom. This gives a
slightly smaller value than the statistic of the quadratic form (d—e)'V=!(d—e)
(Peto and Pike; 1973).

We will present the detailed calculations of goodness of fit tests for the
patient data of chronic liver disease, and will briefly report the results of the

other two examples in section 5.

Example. For chronic liver disease data, the goodness of fit test of
Schoenfeld (1980) is applied for testing whether the covariate GROUP gives
rise to the proportional hazards. For the two groups of regular EIS and
episodic EIS, labelling these Group 1 and Group 2 respectively, time inter-
vals of [0,8), [8,13), [13,18), [18,24), [24,28), and [28,00) are chosen. For
z; = (PSCORE;,, ALB;, DIR;) and 3= (—0.7035,0.1176,0.1841), we get the
values of d,; and egz; in Table 1. The test statistic ) becomes 2.4635 with 5
d.f. (p = 0.22) which is not significant.

Table 1. Observed and expected number of deaths by Schoenfeld’s method

Interval 1 2 3 4 5 6

Group 1 ds; | 4 1 3 1 1 2 e = T5
Regular EIS | e,; | 2.49 | 0.78 | 4.36 | 1.23 | 1.12 | 2.02 T

Group 2 dsj | 2 1 8 2 2 4 1y = 58

Episodic EIS | e,; | 3.51 | 1.22 | 6.64 | 1.77 | 1.88 | 3.98

Andersen (1982) derived a test statistic to examine the inclusion of the
covariate z;4; in the proportional hazards model. He adopted the approach of
Kalbfleisch and Prentice (1973) assuming that the underlying hazard function

Aos(t) is constant in each time interval [t;_4,1;), 7 =1,...,7, and Ag,(t) = A,;.



388 HaeHiang Song and SunHo Lee

The maximum likelihood estimator of A; is

A dy. ]
Asj = g . os=1,....p, j=1,...,7,

1y exp (82 ) Bus

where n, 1s the number of individuals in stratum s, Bij is the time spent by i-

th individual in stratum s and jth interval and z;, is the individual’s covariate
vector. The hypothesis that the covariate zy; gives rise to the proportional

hazards is formulated as

Ast1,; = Asj eXP(as+1);

s+1 s=1,....,p—1,73=1,...,r.
log Asp1; = log Asj + asq1 = log Ay, + Z Qy,
1=2
Using that log /A\sj, s = 1,...,p, g = 1,...,r, are asymptotically inde-

pendent and normally distributed with mean log A,; and variance {E(d,;)}!
under the hypothesis when n, — oo, and also using {d;;}~! as an estimator
of the variance, the weighted least squares estimates of the parameters, &,
and log j\lj, are

Zr log:\S_HJ-log;\sJ
I=1 (degr ;)1 4(de;) "t

=
=1 ((ds+1,j)"l + (ds]-)~1)
) . P d(log gy — i &)
log A;; = log AT = o= b (108 Asj = iy &) g=1,...,r,

P
s=1 dSJ

Qsy1 = s=1,...,p—1,

where &1 = 0. From the linear models approach to the log /A\s]-, the assumption

of proportional hazards can then be tested by the likelihood ratio test statistic,
T ¥4 R R 5 9 ) v
Q=>>4d, [log Asj — <log A1 + Zal)] ~ XZ((T —1)(p— 1)),
=1 s=1 =1

when nq,...,n, — oc.

Example.  Assuming the underlying hazard functions of regular EIS

and episodic EIS group are constant in each interval of [0,8), [8,13), [13,18),
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[18,24), [24,28), [28,00), we obtain the values of d,; and log A,;. log Ay, é,
and the expected number of deaths e,; are calculated under the proportional
hazards assumption. The test statistic is ¢ = 1.603 with 5 d.f. (p = 0.90),

which is clearly not significant. Thus, the proportionality is not rejected.

Table 2. Summary statistics of Andersen’s method and the number of deaths
as in Table 1

Interval 1 2 3 4 5 6
d,; 4 1 3 1 1 2 _
Growp I 1 % | 996 | 075 | 414 | 113 | 113 | 226 | M7
Regular EIS ! : - @ =0
log A,; | -4.200 | -4.733 | -3.429 | -4.335 | -3.684 | -3.773
d,; 2 1 8 2 2 4 -
) gro;p ;19 e | 374 | 125 | 686 | 187 | 187 | 374 | "7 ;s "
PISOGE B 10g X, | -4.594 | -4.712 | -2.402 | -3.682 | -3.105 | -3.244 | 2 T
log X; | -4.559 | -4.975 | -3.049 | -4.236 | -3.634 | -3.757

The advantage of the two tests of Schoenfeld (1980) and Andersen (1982)
is apparent; if departures from proportional hazards are indicated with the
test result, the element values of each interval may suggest just where the
proportionality is failing. On the other hand, the tests of Wei (1984) and Gill
and Schumacher (1987), which will be introduced shortly, do not provide these
details.

Wei (1984) suggested an omnibus goodness of fit test for the proportional
hazards model. Tests of Wei and Gill and Schumacher are derived from count-
g process models having multiplicative intensity processes. Consider two
groups of sizes ny; and n, and let n = n; + ny. Let A () be the cumulative
hazard function of stratum s, where s = 1,2. If two hazard functions are
proportional, then A;(¢) = 6A5(t) for some constant 6, which is usually called
a relative risk. Wei (1984) defined 6 as the Cox’s maximum partial likelihood
estimator of #, and derived a test statistic for the hypothesis of proportional
hazards. For the following process

/le / Y1(50+Y2() d(Ni(s) + Na(s))
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n 2 n
1 s )0
Sl (tie <) bl (Lo < 1)
kz=; 2; kzz sk)f) T Ya(tak)

= M(t) - Ex(t),

where 2, is a survival time of the kth individual in stratum s, N,(t) and FE,(t)
are respectively the observed and expected number of deaths in stratum s until
time ¢, Y;(¢) is the number of observations in R(t) in stratum s, &, is 1 if £
is a failure time or 0 if £, is a censoring time, and I(t, < t) is the identity
function, s = 1,2, & = 1,...,ng, the natural goodness of fit test based on

Un(é;t) is

? max |U,(6;1)]

0<t<oo

T, = (néﬁ(oo))

where

L ot SNl
Zz=:(Y1( ta)d + Ya(ta))”

Wei (1984) proved consistency of the statistic T, against the alternative
of nonproportional hazards. Under the proportional hazards, the statistic T},
converges in distribution to a process whose distribution has been extensively
studied; a table published in Koziol and Byar (1975) can be used.

Example. Under the proportional hazards assumption between regular
EIS and episodic EIS group, the relative risk is estimated as #=0.5593. From
Table 3, f(c0) = 13.091/133 = 0.098 is obtained. Since max |Un (65 t55)]

= 2.1985, the test statistic T}, yields a value of 0.8125 Wlth a p-value 0.5.
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Table 3. Summary statistics of Wei’s and Gill & Schumacher’s method

Number of S . Statistics of

observations Statistics of Wei Gill & Schumacher
t Yi(t) Ya(t) nn(t) Ni(t) Ei(t) U.(8;t) Ki(t) K, (t)
6 75 58 0.871 2 0.839 1.161 4350 32.707
7 71 57 1.731 4 2.482 1.518 4047 31.617
10 59 52 0.425 4 2.870 1.130 3068 27.639
12 5H& 51 0.425 ) 3.259 1.741 2958 27.138
13 59 49 1.695 7 4.801 2.199 2695 25.914
14 51 45 0.425 7 5.189 1.811 2295 23.906
15 50 44 0.849 7 5.967 1.033 2200 23.404
16 49 39 1.733 8 7.617 0.383 1911 21.716
18 44 34 0.436 8 8.037 0.037 1496 19.180
19 43 32 0.438 9 8.466 0.534 1376 18.347
22 33 31 0.418 9 8.840 0.160 1023 15.984
24 32 30 0.418 9 9.213 0.213 960 15.484
25 32 29 0.422 9 9.595 0.595 928 15.213
27 27 27 0.411 10 9.954 0.046 729 13.500
28 25 27 1.607 12 11.318 0.682 675 12.981

30 20 24 0.388 12 11.636  0.364 480 10.909
39 10 i1 0.399 12 11.973  0.027 110 5.238
Total: 13.091

Gill and Schumacher (1987) derived a test based on the estimator of the
relative risk. It can be simply estimated by the generalized rank estimator

N t
(9[(6 _ [‘0 // [‘0 U) le )

0

K, A
Zu<t %ﬂ (u) _ ]{02
Zu<t AO U (U) -[{01

where the function Ky(t) is a predictable random weight function and n,(¢)
is the number of deaths at time ¢ in stratum s. Under the assumption of
proportional hazards, the difference between Hkl and 9k2 for two different weight
functions K;(t) and K,(t), 1&12/1&11 - Ix22/1x21 should be small for large
sample sizes. For convenience, the symmetrized version Qg , x, = ]&11]&22 -

391
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I;';)l ];’12, which should also be close to zero under Hy, is considered. Under Hy,
Var(Qk, k,) can be estimated by

VGT(QKJI\'}) = KnKpVin — K11 K Vo — Ko KioViy + K11 K12Vay

where
N -1
Vi = /A VKo (w) (Ya () Ya(w) ™ d(Ny(u) + Na(u))
-1
= L Ki(wKe(w)(Yi(@)Ya(w) " (i () + nalu).
u<lt
_ QI\”ll\’g . . . . . .
Then Tk, g, = —= 1s asymptotically a standard normal distribution
VaT(QKlf\'E)

as n — oo . The choice of weight functions would yield different test results.

Example. For chronic liver disease data, we choose K;(t) as the Gehan’s
weight function, i.e., Y1(#)Y2(%), and K;(t) as the weight function of log rank

test, ie., Yi(¢)Y(¢ )/(Yl( )+ Yot )) Calculations of K;(t) and K,(t) are

shown in Table 3. For the Gehan’s weight function we obtain ]&11 = 531
and ]&12 = 830, and for the log rank weight function we obtain 1&21 = 5.581
and [&22 = 9.977. And the asymptotic variance of Qr Kk, under Hy is esti-
mated as Var (@k,K,) = 367203.04. Therefore, based on a Gehan versus log
rank comparison, a standardized test statistic is Tr K, = 1.09(p = 0.28), and
does not reject the proportionality.

5. EXAMPLES

5.1. Medical data.

There is a simple indicator of nonproportionality in applications; the log
rank and Gehan’s generalized Wilcoxon tests might give different answers par-
ticularly in nonproportional situations (Gill and Schumacher, 1987). P-values
of the GROUP variable for chronic liver disease data are 0.109 for the log rank
and 0.239 for Wilcoxon test. And p-values of the gastric carcinoma data are
0.312 for the log rank and 0.030 for Wilcoxon test. Likewise different p-values
for thymic lymphoma data are 0.070 for log rank and 0.380 for Wilcoxon test.
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We now apply the four gooduess of fit tests to these data sets, and the
results are summarized in Table 4. For chronic liver disease data, all four tests
give different p-values but all of them are insignificant. The test results of
Schoenfeld (1980) and Andersen (1982) differ depending on the partitioning of
time intervals.

For the gastric carcinoma data with crossing hazards, all four tests reject
the null hypothesis. However, for the thymic lymphoma data with diverging
hazards, only the test of Gill and Schumacher (1987), based on a log rank
versus Gehan comparison, definitely rejects the null hypothesis and the other
tests provide a borderline significance. Again Schoenfeld’s test provides diverse
results with different time intervals. As the pattern of diverging hazards is
clearly demonstrated from 240 days onwards, it is promising that at least any
of the four tests rejects the null hypothesis. However, it should be reminded
Gill
and Schumacher (1987) presented a data set which failed to reject the null
hypothesis despite of its apparent nonproportionality.

that Gill and Schumacher’s test is not a guarantee for all situations.

Table 4. Performances of the four goodness of fit tests

- 393

Schoenfeld ~ Andersen Wei Gill & Schumacher
2 =2300 Q=057
d.f.=2 d.f.=2
Cl'u(*l(;:;:sl;ver p=0.317 p = 0.749 T = 0813 T = 1098
(GROUP) | x2=2464 @Q=1.603 P~ 04505 p=0.27
d.f.=5 d.f.=5
p=0220 p=0.90l
2 IS _— :
Gastric | X = 18.268 Qd‘f%bf T =1.953 T =3.872
carcinoma -~ 0_60)3 ) - .07)207 p < 0.0001 = 0.00005
=576  (Q =6463
d.f.=: d.f.=3
Thymic | P= 0124 p=0091 5 o9 T — —2.247
lymphoma W =0561 Q=875 p = 0.06x% p = 0.025
d.f.=14 d.f.=4
p=0049  p=0.068
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* The result was provided by Wei (1984).
5.2. Simulations.

The performance of the tests is studied using Monte Carlo simulations. The
random numbers are generated by the IMSL subroutines and all simulations

include 1000 samples. The survival distributions include Weibull (W()\,a'))
with density function aA(At)*~! exp(—(/\t)“), where A, o > 0, and exponential

(W()\, 1)) with density function Aexp(—Az), where A > 0. A uniform random
censorship is modeled and censoring of 20% is generated approximately. Sixty
observations are allocated to each group and time intervals of six are chosen.
The power is determined by the percentage that the computed statistics exceed
the cut off value corresponding to o = 0.05 in 1000 trials. Two heterogeneous
distributions are generated for the power calculations, and the scale parameter
of a Weibull distribution is fixed to be 1.0.

The results of simulations are summarized in Table 5. The empirical sizes of
tests are designated with a star, which correspond to testing the null hypothesis
of proportional hazards. The size of Gill and Schumacher’s statistic is near
to or somewhat larger than the nominal level @ = 0.05, but the sizes of other
statistics are typically smaller than 0.05. Monte Carlo estimates of power of
0.05 level tests differ for the four statistics. Note that the simulation data
sets have a monotone hazard ratio except the last two cases. Across a broad
range of alternatives of monotone departures from a constant hazard ratio,
superior performance of Gill and Schumacher’s test is demonstrated. And
Wei’s statistic is the next most powerful and Andersen’s statistic is slightly
less powerful than that of Schoenfeld. Nonmonotone changes of the hazard
ratio through time are artificially produced and powers of these alternatives
clearly demonstrate that Gill and Schumacher’s test is not a best choice, and
tests of Schoenfeld and Andersen are rather safe in situations of nonmonotone
hazard ratio. Fluctuating behavior of Wei’s statistic is noticed.
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Table 5. Empirical powers of the four goodness of fit tests

Distributions Tests of
Group 1 Group 2 | Schoenfeld Andersen Wei  Gill& Schumacher
+*W(0.5,1) W(0.5,1) 0.035 0.029 0.030 0.042
+W(0.5,1) W(2.0,1) 0.036 0.032 0.039 0.050
«*W(1,0.5) W(1,0.5) 0.032 0.062 0.045 0.073
W(1,0.5) W(1,0.7) 0.213 0.230 0.324 0.468
*W(1,2.0) W(1,2.0) 0.040 0.023 0.049 0.067
W(L,2.0) W(1,2.2)| 0.060 0.045  0.059 0.086
W(1,2.0) W(1,2.4) 0.065 0.041 0.119 0.206
W(1,2.0) W(1,2.6) 0.120 0.069 0.186 0.334
W(1,2.0) W(1,2.8)| 0.194 0.128  0.338 0.495
W(1,2.0) W(1,3.0) 0.312 0.225 0.479 0.640
W(1,2.0) W(L,4.0)| 0.784 0.695  0.890 0.962
W (1,2.0) ok 0.313 0.271 0.142 0.030
W (1,2.0) *ok 0.834 0.749 0.913 0.029

* Monte Carlo estimates of size of tests
+* Heterogeneous distributions, based on the Weibull with a scale parameter 1.

There are several weaknesses in this simulation. Tests of Schoenfeld and
Andersen depend on the partitioning of time intervals and each interval has to
contain a reasonable number of deaths. If the generated observation times do
not produce a failure within any of six intervals, we abandoned that sample,
so the powers of tests of Schoenfeld and Andersen are calculated based on less
than 1000 iterations. The effect of number of intervals on the performance of
Schoenfeld’s and Andersen’s test, and the effect of the extent of censoring on
the four tests need to be studied in the future.

6. DISCUSSION

There is an increasing awareness of the adverse effects of model misspec-
ification on the statistical inference, and thus it i1s advised for the users of
Cox models to perform goodness of fit analysis. The present paper has shown
that the proportionality of hazards assumption can be investigated by graph-
ical and numerical methods. In our study, plotting the estimate of integrated
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baseline hazard function of one group against another is more useful for check-
ing proportionality than plotting the log integrated hazard function against
time. The graphical examinations can be reinforced by the numerical good-
ness of fit tests for the proportionality of hazards. Advantages of the four
tests differed. Although the tests of Schoenfeld (1980) and Andersen (1982)
provided details of where the proportionality might fail, different test results
might be obtained depending on different partitioning of time intervals. As-
suming constant underlying hazards within each time interval by Andersen’s
test deviates somewhat from the idea of arbitrary hazards which was originally
assumed by Cox model. However, if the underlying hazard is a slowly varying
function of time, then the hazards within each interval can be assumed to be
constant. Although Gill and Schumacher’s test performs best under monotone
hazard ratio alternative, it performs worst under nonmonotone hazard ratio
alternative. Hence, if a more precise form of the alternative can be considered
before proceeding to a test, it would help us choose an appropriate test for a
problem.

When this study was completed, we were introduced to a paper of Lin
and Wei (1991) by a personal correspondence with one of the authors. Their
paper has an added feature of extending the information matrix test, originally
proposed by White (1982), as a goodness of fit test for the proportional hazards
assumption. A part of simulation results by Lin and Wei is conformable with
ours.
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Figure 1. Estimated Kaplan-Meier survival functions for two treatment
groups of chronic liver disease data: solid line for regular EIS group and dashed
line for episodic EIS group.
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Figure 2. Estimated hazard functions for two treatment groups of chronic
liver disease data : lines are the same as in Fig. 1.
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Figure 3. Estimated log cumulative hazard functions for chronic liver disease,
gastric carcinoma and thymic lymphoma data.
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Figure 1. Estimated Kaplan-Meier survival functions for two treatment
groups of chronic liver disease data: solid line for regular EIS group and dashed
line for episodic EIS group.
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Figure 3. Estimated log cumulative hazard functions for chronic liver disease,
gastric carcinoma and thymic lymphoma data.

ALB PSCORE

(- iR

Logl-qf8)

Logl-ngf$})

T T T T T T T T T T
o s00 1000 1500 2000 o 100 200 300 400 500 600 700 400

Days Days



Goodness of Fit Tests of Cox’s Proportional Hazards Model 399

Figure 4. Estimated cumulative hazard function of group 1 versus that of
group 2 for chronic liver disease, gastric carcinoma and thymic lymphoma data.
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