
Journal of the Korean Data & http://dx.doi.org/10.7465/jkdi.2017.28.3.659
Information Science Society 한국데이터정보과학회지
2017, 28(3), 659–668

Estimation of entropy of the inverse weibull distribution
under generalized progressive hybrid censored data

Kyeongjun Lee1

1Department of Computer Science and Statistics, Daegu University
Received 3 March 2017, revised 12 April 2017, accepted 19 April 2017

Abstract

The inverse Weibull distribution (IWD) can be readily applied to a wide range
of situations including applications in medicines, reliability and ecology. It is generally
known that the lifetimes of test items may not be recorded exactly. In this paper, there-
fore, we consider the maximum likelihood estimation (MLE) and Bayes estimation of
the entropy of a IWD under generalized progressive hybrid censoring (GPHC) scheme.
It is observed that the MLE of the entropy cannot be obtained in closed form, so we
have to solve two non-linear equations simultaneously. Further, the Bayes estimators
for the entropy of IWD based on squared error loss function (SELF), precautionary
loss function (PLF), and linex loss function (LLF) are derived. Since the Bayes estima-
tors cannot be obtained in closed form, we derive the Bayes estimates by revoking the
Tierney and Kadane approximate method. We carried out Monte Carlo simulations to
compare the classical and Bayes estimators. In addition, two real data sets based on
GPHC scheme have been also analysed for illustrative purposes.

Keywords: Generalized progressive hybrid censoring, inverse weibull distribution, max-
imum likelihood estimation, Tierney and Kadane approximation.

1. Introduction

Entropy, which is one of the important terms in statistical mechanics, was originally defined
in physics especially in the second law of thermodynamics. The differential entropy H(f)
(Cover and Thomas, 2005) of the random variable X is given by

H(f) = −
∫ ∞
−∞

f(x)logf(x)dx,

where f(x) denote a probability density function (pdf) of random variable X. Kang et al.
(2012) considered the approximate maximum likelihood estimators of entropy of a double
exponential distribution based on multiply Type II censoring. Cho et al. (2014) provided
the Bayes estimators of entropy of a Rayleigh distriution based on doubly-generalized Type
II hybrid censoring scheme. Cho et al. (2015a) provided the Bayes estimators of entropy of
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a Weibull distribution based on generalized progressive hybrid censoring scheme. Lee and
Cho (2015) provided the Bayes estimators of entropy of a exponential distribution based on
multiply Type II censored competing risks data.

The IWD can be readily applied to a wide range of situations including applications in
reliability, medicines and ecology. Keller et al. (1985) derived the IWD by investigating
failures of mechanical components subject to degradation. Khan et al. (2008) presented
some important theoretical properties of the IWD. The cumulative distribution function
(cdf) is given by

F (x;α, β) = exp
(
−βx−α

)
, x > 0, α > 0, β > 0, (1.1)

where α and β are the scale and shape parameters, respectively. Note that when α = 1, we
have the Frechet distribution function. Also, when β = 1 and β = 2, the IWDs are referred
to as the inverse exponential and inverse Raleigh distribution, respectively.

Let us consider a life-testing experiment where n items is kept under observation until
failure. These items could be some components, system or computer chips in reliability
study experiments, or they could be patients put under certain clinical or drug conditions.
However, it is generally known that the lifetimes of test items may not be recorded exactly.
Also, there are situations wherein the withdrawal of items prior to failure is prearranged in
order to decrease the cost or time associated with experience.

Therefore, the aim of this paper is to propose the classical and Bayes estimation of the
entropy of a IWD under GPHC scheme. However, we observed that the MLE of the entropy
cannot be derived in closed form. So we have to solve two non-linear equations simulta-
neously. Also, we derive the Bayes estimation of the entropy based on flexible priors. The
Bayes estimators for the entropy of IWD based on SELF, PLF and LLF are derived. Since
the Bayes estimators cannot be obtained in closed form, we derive the Bayes estimates by
revoking the Tierney and Kadane approximate method.

The rest of this paper is organized as follows. In section 2, we derives a classical and
Bayes estimators of the entropy of IWD based on GPHC scheme. In section 3, Monte Carlo
simulations are conducted to compare the results among classical and Bayes estimators, and
real data set based on GPHC scheme are analysed for illustrative purposes.

2. Entropy estimation

Let X be a random variable with the cdf, F (x), and the pdf, f(x). Then, the differential
entropy of X is given by

H(f) = E[−logf(x)] = −
∫ ∞
0

f(x)logf(x)dx = −αβ[A+B + C],

where A, B and C are obtained below:

A =

∫ ∞
0

log(αβ)x−(α+1)e−βx
−α
dx =

log(αβ)

αβ
,

B = −(α+ 1)

∫ ∞
0

log(x)x−(α+1)e−βx
−α
dx

=
α+ 1

α2β

[∫ ∞
0

log(u2)e−u2du2 −
∫ ∞
0

log(β)e−u2du2

]
= −α+ 1

α2β
(γ + logβ) ,
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and

C = −β
∫ ∞
0

x−2α−1e−βx
−α
dx = − 1

αβ

∫ ∞
0

u2e
−βu2du2 = − 1

αβ
,

where γ is the Euler-Mascheroni constant. Finally, Shannon entropy reduces to

H(f) = 1 +

(
1 +

1

α

)
(γ + logβ)− log (αβ) .

2.1. Maximum likelihood estimation

This section deals with deriving MLEs of the unknown parameters of a IWD. As a con-
sequence, MLE of entropy will also be obtained. Suppose that X1:m:n, X2:m:n, · · · , Xm:m:n

denote the observed values of such a progressively Type II censored sample. The integer
m, k ∈ {1, 2, · · · , n} is pre-fixed such that k < m. Also, (R1, R2, · · · , Rm) are pre-fixed in-
tegers satisfying

∑m
i=1Ri +m = n. And T ∈ (0,∞) is a pre-fixed time point. Using Cho et

al. (2015b) and Eq (1.1), the likelihood functions of α and β are given by

Case I

L1(α, β) =C1(αβ)kx
−(α+1)
k:m:n e−βx

−α
k:m:n

[
1− e−βx

−α
k:m:n

]R∗
k
k−1∏
i=1

x
−(α+1)
i:m:n e−βx

−α
i:m:n

×
[
1− e−βx

−α
i:m:n

]Ri
,

Case II

L2(α, β) = C2(αβ)D
D∏
i=1

x
−(α+1)
i:m:n e−βx

−α
i:m:n

[
1− e−βx

−α
i:m:n

]Ri [
1− e−βT

−α
]R∗

D+1

,

Case III

L3(α, β) = C3(αβ)m
m∏
i=1

x
−(α+1)
i:m:n e−βx

−α
i:m:n

[
1− e−βx

−α
i:m:n

]Ri
,

where C1 =
[∏k

i=1

∑m
k=i(Rk + 1)

]
, C2 =

[∏D
i=1

∑m
k=i(Rk + 1)

]
, C3 = [

∏m
i=1

∑m
k=i(Rk + 1)],

R∗k = n− k −
∑k−1
i=1 Ri, and R∗D+1 = n−D −

∑D
i=1Ri.

Therefore, likelihood functions can be combined as

L(α, β) ∝ (αβ)s
s∏
i=1

x
−(α+1)
i:m:n e−βx

−α
i:m:n

[
1− e−βx

−α
i:m:n

]Ri
η(α, β),

where s = k, η(α, β) = 1 and Rk = n − k −
∑k−1
i=1 Ri for Case I, s = D and η(α, β) =

[1− e−βT−α
]R

∗
D+1 for Case II, and s = m and η(α, β) = 1 for Case III.
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Hence, the log-likelihood function becomes

l(α, β) ∝slogαβ − (α+ 1)

s∑
i=1

logxi:m:n − β
s∑
i=1

x−αi:m:n +

s∑
i=1

log
[
1− e−βx

−α
i:m:n

]Ri
+ logη(α, β).

Differentiating the log-likelihood function partially with respect to α and β and then
equating to zero, we have

∂l(α, β)

∂α
=
s

α
+

s∑
i=1

[
βx−αi:m:nlogxi:m:n − logxi:m:n −Ri

x−αi:m:nlogxi:m:ne
−βx−α

i:m:n

1− e−βx−α
i:m:n

]
+ η1α(α, β) = 0, (2.1)

and

∂l(α, β)

∂β
=
s

β
−

s∑
i=1

x−αi:m:n +

s∑
i=1

Ri
xi:m:ne

−βx−α
i:m:n

1− e−βx−α
i:m:n

+ η1β(α, β) = 0. (2.2)

Here, for Case II,

η1α(α, β) = −R∗D+1

βT−αlogTe−βT
−α

1− e−βT−α and η1β(α, β) = R∗D+1

T−αe−βT
−α

1− e−βT−α ,

for Case I and Case III,

η1α(α, β) = η1β(α, β) = 0.

The MLEs of α and β are the solution of Eqs (2.1) and (2.2). However, solutions for α and
β are not available. Therefore, we propose to use the Newton-Raphson algorithm to solve
it. See for example the work of Kwon et al. (2014), Lee et al. (2014) and Shin et al. (2014).

Using the MLEs of α and β, say α̂ and β̂, the MLE of entropy function is obtained as

Ĥ = 1 +

(
1 +

1

α̂

)(
γ + logβ̂

)
− log

(
α̂β̂
)
.

2.2. Bayes estimation using Tierney and Kadane approximation

In this section, we obtain the Bayes estimators for the entropy function of the IWD under
GPHC scheme using Tierney and Kadane approximation. We obtain estimator under three
different loss functions defined as

SELF : Ls(θ̂, θ) = (θ̂ − θ)2,

PLF : Lp(θ̂, θ) = (θ − θ̂)2/θ̂,

LLF : Ll(θ̂, θ) = exp[c(θ̂ − θ)]− c(θ̂ − θ)− 1.



Estimation of entropy of the inverse weibull distribution under generalized progressive hybrid censoring 663

Let X1:m:n, X2:m:n, · · · , Xs:m:n denote a GPHC sample of IWD(α, β). There does not exist
any conjugate prior distribution for α and β. Therefore, we assumed that priors of α and β
are independent, and the parameters α and β follow the gamma(a1, b1) and gamma(a2, b2)
prior distributions with a1 > 0, a2 > 0, b1 > 0 and b2 > 0. Therefore, the joint prior
distribution of α and β is obtained as

π(α, β) ∝ αa1−1βa2−1e−b1α−b2β , α > 0, β > 0.

Note that, when a1 = a2 = b1 = b2 = 0, the prior distribution is the diffuse prior of α and
β. Then, the joint density of the parameters and data is obtained as follows.

L (α, β|X)π(α, β) ∝αs+a1−1βs+a2−1
s∏
i=1

x
−(α+1)
i:m:n e−βx

−α
i:m:n−b1α−b2β

[
1− e−βx

−α
i:m:n

]Ri
η(α, β),

where X = (X1:m:n, X2:m:n, · · · , Xs:m:n).
Then, we can derive the Bayes estimator of entropy under LLF. It is derived as

H̃L = −1

c
log

[∫∞
0

exp{ −c[1 + (1 + 1/α)(γ + logβ)− log(αβ)]}L(α, β|X)π (α, β) dαdβ∫∞
0

∫∞
0
L(α, β|X)π (α, β) dαdβ

]
.

It is easily observed that above equation is in the form of ratio of two integrals for which
simplified closed forms are not available. Thus we use Tierney and Kadane approximation
method to approximate all the Bayes estimators. Tierney and Kadane (1986) introduced
an easily computable approximation for the posterior mean and variance of a non-negative
parameter or more generally, of a smooth function of the parameter that is non-zero on
the interior of the parameter space. For detail, let g be a smooth, positive function on the
parameter space. The posterior expectation of g(α, β) is obtained as

ĝ = E(g(α, β)|X) =

∫ ∫
g(α, β)π(α, β|X)dαdβ =

∫ ∫
env

∗(α,β)dαdβ∫ ∫
env(α,β)dαdβ

,

where

v(α, β) =
logL(α, β) + logπ(α, β)

n
and v∗(α, β) = v(α, β) +

logg(α, β)

n
.

For the (α, β), the Bayes estimator using Tierney and Kadane approximation of g(α, β)
can be obtained as

ĝ =

√
|Σ∗|
|Σ|

env
∗(α̂v∗ ,β̂v∗ )−nv(α̂v,β̂v),

where (α̂v, β̂v) and (α̂v∗ , β̂v∗) maximize the v(α, β) and v∗(α, β), respectively. |Σ∗| and |Σ|
denote the minus of inverse of Hessians of v(α, β) and v∗(α, β) at (α̂v, β̂v) and (α̂v∗ , β̂v∗),
respectively. In our problem, we observe that

v(α, β) =
1

n

[
(s+ a1 − 1)logα+ (s+ a2 − 1)logβ − (α+ 1)

s∑
i=1

logxi:m:n

− β
s∑
i=1

x−αi:m:n +

s∑
i=1

Rilog
[
1− e−βx

−α
i:m:n

]
+ logη(α, β)− (b1α+ b2β)

]
.
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Then, (α̂v, β̂v) is computed by solving the following equations

∂v(α, β)

∂α
=− b1 +

s+ a1 − 1

α
−

s∑
i=1

logxi:m:n

+ β

s∑
i=1

[
x−αi:m:nlogxi:m:n −Ri

x−αi:m:nlogxi:m:ne
−βx−α

i:m:n

1− e−βx−α
i:m:n

]
+ η1α(α, β) = 0,

and

∂v(α, β)

∂β
=− b2 +

s+ a2 − 1

β
−

s∑
i=1

x−αi:m:n +

s∑
i=1

Ri
x−αi:m:ne

−βx−α
i:m:n

1− e−βx−α
i:m:n

+ η1β(α, β) = 0.

Also, we compute |Σ| and it is given by

|Σ| =
[
∂2v(α, β)

∂α2

∂2v(α, β)

∂β2
− ∂2v(α, β)

∂α∂β

∂2v(α, β)

∂β∂α

]−1
,

where

∂2v(α, β)

∂α2
=

1

n

[
−s+ a1 − 1

α2
− β

s∑
i=1

{
Rix

−α
i:m:n (logxi:m:n)

2
e−βx

−α
i:m:n

× βx−αi:m:n + e−βx
−α
i:m:n − 1(

1− e−βx−α
i:m:n

)2 + x−αi:m:n (logxi:m:n)
2

}
+η2α2(α, β)

]
,

∂2v(α, β)

∂β2
=

1

n

[
−s+ a2 − 1

β2
−

s∑
i=1

Ri
x−2αi:m:ne

−βx−α
i:m:n(

1− e−βx−α
i:m:n

)2 + η2β2(α, β)

]

and

∂2v(α, β)

∂α∂β
=

1

n

[
s∑
i=1

Rix
−α
i:m:nlogxi:m:ne

−βx−α
i:m:n

βx−αi:m:n + e−βx
−α
i:m:n − 1(

1− e−βx−α
i:m:n

)2
+

s∑
i=1

x−αi:m:nlogxi:m:n + η2αβ(α, β)

]
.

Here, for Case II,

η2α2(α, β) = −βR∗D+1T
−α (logT )

2
e−βT

−α βT−α + e−βT
−α − 1[

1− e−βT−α]2 ,

η2αβ(α, β) = R∗D+1T
−αlogTe−βT

−α βT−α + e−βT
−α − 1[

1− e−βT−α]2 , η2β2(α, β) = −R∗D+1

T−2αe−βT
−α(

1− e−βT−α)2 ,
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for Cases I and III,

η2α(α, β) = η2β(α, β) = η2αβ(α, β) = 0.

In order to compute Bayes estimator of entropy function under LLF, we take g(α, β) =
exp{−c[1 + (1 + 1/α)(γ + logβ)− log(αβ)]}. Then, v∗L(α, β) is obtained as

v∗L(α, β) = v(α, β)− c

n

[
1 +

(
1 +

1

α

)
(γ + logβ)− log(αβ)

]
.

Now solving the following equation

∂v∗L(α, β)

∂α
=
∂v(α, β)

∂α
+

c

nα2
(α+ γ + logβ) = 0

and

∂v∗L(α, β)

∂β
=
∂v(α, β)

∂β
− c

nαβ
= 0,

we obtain (α̂v∗L , β̂v∗L). Then, we compute |Σ∗L| and it is given by

|Σ∗L| =
[
∂2v∗L(α, β)

∂α2

∂2v∗L(α, β)

∂β2
− ∂2v∗L(α, β)

∂α∂β

∂2v∗L(α, β)

∂β∂α

]−1
,

where

∂2v∗L(α, β)

∂α2
=
∂2v(α, β)

∂α2
− c

nα3
(α+ 2γ + 2logβ),

∂2v∗L(α, β)

∂β2
=
∂2v(α, β)

∂β2
+

c

nαβ2

and

∂2v∗L(α, β)

∂α∂β
=
∂2v(α, β)

∂α∂β
+

c

nα2β
.

Then, the Bayes estimator of entropy function under LLF is obtained by

ĤL = −1

c
log

[√
|Σ∗L|
|Σ|

e
nv∗L(α̂v∗L

,β̂v∗
L
)−nv(α̂v,β̂v)

]
.

Similarly, we can obtain the Bayes estimators ĤS and ĤP using Tierney and Kadane
approximation of entropy under SELF and PLF, respectively.

3. Illustrative examples and simulation results

3.1. Illustrative example

In order to analyze the real life data set, we use the proposed estimators in the above
section. The real life data set were from the data on failure times of aircraft windshields
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(Blischke and Murthy (2000)). Blischke and Murthy (2000) have examined the goodness-of-
fit of the data to IWD and they found that the IWD fits the data. Here, we consider the case
when the data are progressively Type II censored with the following schemes: m = 77 and
R77 = 10, R1 = · · · = R76 = 0. And, we take Case I: k = 60 and T = 3.0, Case II: k = 60
and T = 3.5 and Case III: k = 60 and T = 4.5. The Bayes estimators based on the diffuse
prior (a1 = a2 = b1 = b2 = 0.00001) are obtained. And, the Bayes estimator based on the
LLF with c = 1.5, 2.0 and 2.5 is obtained. Table 3.1 shows the estimates of the entropy under
GPHC scheme. In Table 3.1, we have tabulated entropy of the respective MLE in the third
column of the table. In the other columns, the Bayes estimates of entropy using Tierney and
Kadane approximation method are tabulated. We observed that Bayes estimates of entropy
under SELF are marginally smaller than the corresponding Bayes estimates of entropy under
PLF and LLF.

Table 3.1 Estimates of entroy for example.

Case T Ĥ ĤS ĤP
ĤL

c = 1.5 c = 2.0 c = 2.5
Case I 3.0 2.5292 2.5261 2.5262 2.5286 2.5283 2.5280
Case II 3.5 2.4264 2.4228 2.4229 2.4264 2.4246 2.4244
Case III 4.5 2.3333 2.3292 2.3293 2.3309 2.3307 2.3305

3.2. Simulation results

Since the performance of the different methods cannot be compared theoretically, we
carried out Monte Carlo simulations to compare the different methods. We consider various
n, m, k and T , and three different progressively Type II censoring schemes (PCS), namely;
Scheme I : Rm = n−m and Ri = 0 for i 6= m. Scheme II : R1 = n−m and Ri = 0 for i 6= 1.
Scheme III : R1 = Rm = (n−m)/2 and Ri = 0 for i 6= 1 and m.

In each cases, we take α = 2 and β = 2, and we replicate the process 10,000 times. The
associated MLEs are computed using a Newton-Raphson method. All Bayes estimates are
calculated with respect to the diffuse prior (a1 = a2 = b1 = b2 = 0.00001) distribution. Bayes
estimates of entropy are obtained with respect to SELF, PLF and LLF. And, the Tierney
and Kadane approximation method have been used to derive approximate closed forms for
Bayes estimates. Under LLF, Bayes estimates are obtained for c = 1.5, 2.0 and 2.5. And,
various schemes have been taken into consideration to calculate bias and mean squared error
(MSE) of all estimates. And these results are tabulated in Table 3.2. We present discussions
based on the MSEs and biases.

In Table 3.2, MSEs and biases of all estimates of entropy are presented for various n, m,
k, T and PCS. In general, the MSE and bias decrease as sample size increases. For fixed
sample size, the MSE and bias decrease generally as the number of progressive censored
data decreases. For fixed sample size and progressive censoring data size, the MSE and bias
decrease generally as the time T increases. For fixed time T , sample and progressive censoring
data size, the MSE and bias decrease generally as the number of guarantee sample size k
increases. It is also observed that the MLE for schemes I and III behaves quite similarly
in terms of bias and MSE. The MLE for scheme II has larger MSE and bias than the
corresponding MLE for the other two schemes. Also, we can observe that the Bayes estimates
of entropy under SELF and PLF behave almost similar in terms of MSEs and biases. This
holds true for all presented schemes. However, we can observe that Bayes estimates of entropy
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Table 3.2 The relative MSEs and biases of entropy estimators with MLE and Bayes estimator.

n m k Sch. Ĥ ĤS ĤP
ĤL

c = 1.5 c = 2.0 c = 2.5
T = 1.5

20 10 4 I .2667(-.0932) .2409(.0750) .2444(.0833) .2328(.0975) .2262(.0885) .2204(.0798)
II .3044(-.1766) .2157(.0316) .2175(.0438) .2040(.0662) .1985(.0531) .1937(.0408)
III .2757(-.0972) .2425(.0886) .2470(.0987) .2351(.1142) .2272(.1028) .2203(.0921)

14 5 I .2238(-.1056) .1944(.0621) .1972(.0697) .1905(.0843) .1855(.0758) .1810(.0677)
II .2508(-.1380) .1949(.0466) .1969(.0561) .1884(.0748) .1838(.0645) .1797(.0547)
III .2377(-.1118) .2015(.0657) .2044(.0743) .1970(.0904) .1917(.0808) .1869(.0717)

7 I .1927(-.1276) .1524(.0258) .1534(.0326) .1486(.0485) .1461(.0413) .1438(.0343)
II .2274(-.1642) .1625(-.0156) .1621(-.0082) .1532(.0105) .1518(.0030) .1506(-.0042)
III .2066(-.1455) .1541(.0082) .1546(.0154) .1482(.0328) .1462(.0253) .1444(.0181)

18 9 I .1750(-.1356) .1324(-.0092) .1324(-.0034) .1271(.0118) .1260(.0060) .1250(.0003)
II .1799(-.1401) .1335(-.0174) .1332(-.0115) .1270(.0039) .1262(-.0019) .1255(-.0075)
III .1774(-.1385) .1328(-.0137) .1326(-.0079) .1268(.0075) .1259(.0016) .1250(-.0040)

11 I .1646(-.1256) .1265(-.0225) .1261(-.0177) .1206(-.0049) .1201(-.0096) .1197(-.0141)
II .1676(-.1232) .1301(-.0261) .1296(-.0213) .1237(-.0088) .1233(-.0134) .1229(-.0179)
III .1665(-.1249) .1284(-.0246) .1279(-.0198) .1223(-.0072) .1218(-.0118) .1214(-.0163)

40 10 4 I .2381(-.1677) .1816(-.0500) .1807(-.0466) .1697(-.0113) .1692(-.0153) .1687(-.0191)
II .2665(-.1269) .2104(-.0047) .2107(.0010) .2045(.0474) .2012(.0397) .1984(.0325)
III .2222(-.0945) .1954(.0009) .1957(.0042) .1911(.0339) .1892(.0299) .1874(.0261)

20 8 I .1191(-.0266) .1177(.0389) .1181(.0407) .1195(.0590) .1185(.0568) .1176(.0546)
II .1556(-.0770) .1373(.0046) .1375(.0075) .1360(.0354) .1349(.0317) .1339(.0282)
III .1357(-.0313) .1324(.0425) .1329(.0449) .1348(.0670) .1335(.0641) .1322(.0612)

10 I .1168(-.0285) .1146(.0368) .1150(.0387) .1162(.0569) .1154(.0547) .1145(.0526)
II .1506(-.0921) .1283(.0210) .1282(.0185) .1243(.0063) .1238(.0034) .1234(.0005)
III .1257(-.0420) .1189(.0300) .1192(.0322) .1201(.0540) .1192(.0513) .1183(.0486)

34 12 I .1068(-.0587) .0998(.0069) .1000(.0086) .1004(.0265) .0998(.0244) .0992(.0224)
II .1107(-.0671) .1006(.0018) .1008(.0037) .1006(.0234) .1000(.0211) .0995(.0189)
III .1086(-.0640) .1002(.0033) .1004(.0051) .1005(.0239) .0999(.0217) .0994(.0196)

14 I .1001(-.0670) .0908(-.0033) .0909(-.0016) .0907(.0158) .0903(.0139) .0899(.0120)
II .1044(-.0802) .0913(-.0155) .0913(-.0137) .0899(.0049) .0896(.0028) .0899(.0049)
III .1019(-.0748) .0907(-.0103) .0908(-.0086) .0900(.0094) .0896(.0075) .0893(.0055)

T = 2.0
20 10 4 I .2140(-.1252) .1713(-.0027) .1711(.0030) .1632(.0176) .1617(.0119) .1603(.0064)

II .2634(-.0862) .2355(.0589) .2385(.0682) .2266(.0837) .2203(.0735) .2147(.0637)
III .2166(-.0810) .1950(.0363) .1963(.0427) .1885(.0556) .1850(.0488) .1819(.0423)

14 5 I .1514(-.0748) .1402(.0238) .1410(.0284) .1373(.0383) .1355(.0336) .1338(.0289)
II .2060(-.0825) .1905(.0381) .1922(.0446) .1854(.0573) .1817(.0503) .1783(.0435)
III .1713(-.0714) .1604(.0358) .1617(.0412) .1569(.0521) .1542(.0464) .1516(.0408)

7 I .1506(-.0749) .1390(.0234) .1398(.0280) .1363(.0380) .1345(.0332) .1328(.0286)
II .1833(-.1003) .1580(.0162) .1587(.0223) .1536(.0358) .1514(.0294) .1493(.0232)
III .1593(-.0779) .1454(.0285) .1463(.0338) .1425(.0450) .1404(.0395) .1384(.0341)

18 9 I .1340(-.0603) .1246(.0312) .1253(.0357) .1229(.0454) .1213(.0408) .1199(.0362)
II .1432(-.0752) .1281(.0207) .1287(.0255) .1257(.0363) .1242(.0313) .1228(.0265)
III .1386(-.0690) .1263(.0248) .1269(.0294) .1242(.0396) .1227(.0348) .1212(.0302)

11 I .1238(-.0726) .1092(.0144) .1095(.0186) .1070(.0283) .1060(.0240) .1051(.0199)
II .1352(-.0876) .1143(.0001) .1143(.0045) .1109(.0150) .1101(.0106) .1094(.0063)
III .1284(-.0815) .1106(.0061) .1107(.0104) .1078(.0205) .1069(.0162) .1061(.0119)

40 10 4 I .2364(-.1694) .1791(-.0519) .1781(-.0485) .1670(-.0132) .1666(-.0171) .1661(-.0209)
II .2498(-.0587) .2223(.0301) .2234(.0346) .2213(.0705) .2176(.0645) .2142(.0587)
III .1910(-.1225) .1553(-.0349) .1548(.0321) .1476(-.0039) .1471(-.0071) .1467(-.0102)

20 8 I .0950(-.0623) .0849(-.0126) .0848(-.0113) .0830(.0028) .0829(.0014) .0827(.0000)
II .1329(-.0313) .1275(.0260) .1279(.0281) .1283(.0482) .1273(.0456) .1263(.0430)
III .1008(-.0308) .0968(.0161) .0969(.0175) .0968(.0318) .0963(.0302) .0959(.0285)

10 I .0950(-.0623) .0849(-.0126) .0848(-.0113) .0830(.0028) .0829(.0014) .0827(.0000)
II .1245(-.0388) .1171(.0176) .1173(.0197) .1171(.0395) .1164(.0370) .1157(.0346)
III .1006(-.0308) .0965(.0160) .0966(.0174) .0965(.0317) .0961(.0301) .0956(.0285)

34 12 I .0640(-.0426) .0608(-.0028) .0609(-.0017) .0608(.0089) .0606(.0078) .0604(.0066)
II .0821(-.0450) .0785(-.0010) .0786(.0003) .0785(.0127) .0782(.0113) .0779(.0099)
III .0736(-.0437) .0704(-.0019) .0704(-.0007) .0704(.0108) .0701(.0095) .0699(.0083)

14 I .0640(-.0426) .0608(-.0028) .0609(-.0017) .0608(.0089) .0606(.0078) .0604(.0066)
II .0811(-.0456) .0773(-.0017) .0774(-.0004) .0773(.0120) .0770(.0106) .0768(.0092)
III .0732(-.0441) .0698(-.0023) .0698(-.0011) .0698(.0103) .0695(.0091) .0693(.0078)
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under LLF are better than the Bayes estimates of entropy under SELF and PLF in terms
of MSEs. Also, the problem of selecting a suitable loss function is concerned, it can be seen
that LLF emerges as the best loss function. Among Bayes estimates of entropy, we observed
that Bayes estimates obtained using the LLF for the choice c = 2.5 have overall lower MSEs.
Therefore, for Bayes estimating the entropy under LLF, the choice c = 2.5 seems to be a
reasonable choice for Tierney and Kadane estimates.

4. Conclusions

In this paper, we consider the classical and Bayes estimation of the entropy of a IWD under
GPHC scheme. We observed that the MLE of the entropy cannot be derived in closed form,
so we have to solve two non-linear equations simultaneously. We further consider the Bayes
estimation of the entropy based on flexible priors. The Bayes estimators for the entropy of
IWD based on the symmetric and asymmetric loss functions. Since the Bayes estimators
cannot be obtained in closed form, we derive the Bayes estimates by revoking the Tierney
and Kadane approximate method. The Bayes estimators of entropy are superior to the MLE
in terms of MSEs and biases. The choice of LLF seems to be a reasonable choice for Bayes
estimation of entropy. For Bayes estimating the entropy under LLF, the choice c = 2.5
seems to be a reasonable for Tierney and Kadane estimates. Although we focused on the
entropy estimate of the IWD based on GPHC scheme, estimation of the entropy from other
distributions based on GPHC scheme is of potential interest in future research.
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