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Optimum Simple Step—Stress Accelerated Life Tests
Under Periodic Observation

Do Sun Bai*, Myung Soo Kim* and Sang Hyuk Lee**

ABSTRACT

This paper presents optimum simple step-stress accelerated life test plans for the
case where the test process is observed periodically at intervals of the same length.
Two types of failure data, periodically observed complete data and periodically observed
censored data, are considered. An exponential life distribution with a mean that is a
log-linear function of stress, and a cumulative exposure model for the effect of chan-
ging stress are assumed. For each type of data, the optimum test plan which minimiz-
es the asymptotic variance of the maximum likelihood estimator of the mean life at
a design stress is obtained and its behaviors are studied.

1. Introduction

Accelerated life tests(ALTs) provide information quickly on the life distribution of the
materials or products by testing them at higher-than-usual levels of stress involving high
temperature, voltage, pressure, vibration, cycling rate, load, etc. to induce early failures,
The results obtained at the accelerated conditions are analyzed in terms of a life test
model to relate life length to stress and then extrapolated to the design stress to estimate
the life distribution. The model consists of a life distribution and a relationship for the

distribution parameters in terms of the accelerating variables, Distributions commonly used
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are the exponential, Weibull, and lognormal distributions and the relationships are the
Arrhenius relationship, inverse power law, and Eyring law, etc.

One way of applying stress to the test units is a step stress scheme which allows the
stress setting of a unit to be changed at prespecified times or upon the occurrence of a
fixed number of failures, The former is called time-step stress test and the latter failure
-step stress test. Step-stress ALTs are widely used; for example, life testing of diodes
(Bora(1979)), cable insulation(Nelson(1980)), and insulating fluid(Miller and Nelson(19
83)) etc. The problems of designing optimum step-stress ALTs and making inferences
have been studied by several authors, DeGroot and Goel(1979) studied a partially accel-
erated life test which combines both ordinary and accelerated life testing in a Bayesian
framework. Nelson(1980) optained maximum likelihood estimators(MLES) for the para-
meters of Weibull distribution under the inverse power law using the breakdown time data
of an electrical insulation. Shaked and Singpurwalla(1983) proposed a model based on
shock models and wear processes, and obtained nonparametric estimator for the life dis-
tribution at use condition. Miller and Nelson(1983) obtained optimum simple step stress
ALT plans for the case where test units have exponentially distributed life and are obs-
erved continuously until all test units are run to fail. Here the word ‘simple’ means that
only two stress levels are used in a test. Bai et al.(1989) extended the results of Miller
and Nelson(1983) to the case of censored data.

Different observation schemes generate different types of accelerated test data, which
affect the determination of optimum plan. Four types of data can be considered:

D, : continuously observed complete data,
D, : continuously observed censored data,
. D, : periodically observed complete data,
and D, : periodically observed censored data.

The purpose of this paper is to extend the results for time-step stress test considered by

Miller and Nelson(1983) for D, and by Bai et al.(1989) for D, to those of D; and D,. The

asymptotic variance of the MLE of the mean life at a specified design stress is used as

the optimality criterion. It is assumed that the number of test units and the stress levels

are given and the test process is observed periodically at intervals of the same length.

Exponentially distributed life of test units and a cumulative exposure model are also ass-

umed. For each type of data, optimum test plan is obtained and its behaviors are analyz-
ed. The results of D, and D, are reviewed in Section 2. In Sections 3 and 4, the optimum

designs for D, and D, are considered, respectively.



Notation

n number of test units

Xo, Xy, Xs stresses(design, low, and high)

extrapolation amount :6=(x,—x%,) / (x,—%,)

Y failure time of test unit

9: mean life at stress x;,i=0,1,2

Fi(y) cdf of exponential distribution with mean g;

G(y) cdf of a test unit under simple step—stress

T stress change point for continuously observed data D; i=12

I stress change point for periodically observed data D;, 1=34

T censoring point for continuously observed data D, i=1,2

l censoring point for periodically observed data D,, 1=3,4

h observation interval

Vi +) asymptotic variance of the MLE of the mean life at design stress for D,

1=1,2,3,4

Assumptions

1) Two stresses x, and x, (x,{(x;) are used.

2) For any level of stress, the life distribution of test unit is exponential.

3) The mean life of a test unit at lower stress is longer than at higher stress, ie,,
Go>6,>>9,.

4) The mean life of a test unit is a log-linear function of stress, That 1s,

log 4(x)=a+8x, (1)

where a and 4 are unknown parameters depending on the nature of the product and
the method of test. If x is the log of voltage stress, then (1) is the inverse power law.
If x is the reciprocal of absolute temperature, then (1) is the Arrhenius relationship.

5) Cumulative exposure model holds. That is, the remaining life of a test unit depends
only on the exposure it has seen and the unit does not remember how the exposure
was accumulated (see Miller and Nelson(1983)).

6) The stress change point is at the end of r th interval, ie., at time rh,
The censoring point is at the end of It interval, ie., at time /h,

7)
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2. Continuously Observed Complete and Censored Data

Suppose that n test units are initially placed on low stress x, and run until time 7, when

the stress is changed to x, and the test is continued until all units fail, Also, suppose that
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the test process is observed continuously in time. Then the failure data are of type D,
If the test is continued until a predetermined censoring time T, T >, then the data are
of type D,. In this section, we review the optimum simple time-step stress test plans for
D, and D,.

Theorem 1. (i) The asymptotic variance V.(7) of the MLE of mean life at design
stress for D;, 7=1,2, is given by

n- V,(7)=n - Asvar(log g,)
—=n - Asvar(a+£8 - x,) (2)
=(14€)*/ An(7)+8 / Au(7),

where A, (T)= Ap(7)= 1—exp(-7/ ), Ax(T)=exp(-7/6.),
and Ax(r)=exp(-7/6,) - [1—exp{-(T—7) / g:}].
(ii) The optimum stress change point 7} for D, =1,2, is given by
a) ™=glog[ (1+2¢) / £].
b) 7} is obtained uniquely by the solution of

(3)

[ Ap(r) ]2 An(T) 40,/ 8) {1 = Ap(r) —An(7)} —(LEE )e (4)
An(T) 1—A,(T) 3

Proof. See Miller and Nelson(1983) and Bai et al.(1989). @
Note that A,(7),ij=1,2, is the probability that a test unit will fail while testing at stress

X;.

From formula (3) and (4) it can be shown that;
1) 7} increass in g, for given §.

ii) 7, increases in g, for given g,, £, and T.

iii) 7%, increases in T for given g,, g,, and §

iv) im 7*,=glog {(1+2¢) / &}="",.

3. Periodically Observed Complete Data

Suppose that units are tested exactly as described for D, in Section 2, but the process
is observed periodically at intervals of length h; that is, the data are of type D;. In this
section, we assume that the stress change point is at the end of r'® interval, ie., at time
rh.
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From the assumptions of cumulative exposure model and exponentially distributed life,
the cdf of life of a test unit under simple step stress test is as follows:

G(y)= [ Fy(y) for 0<y<r,
Fy(s+y—7)for Ty <00,

where s is the solution of F,(s)= F,(7). Thus the likelihood function from a single obser-
vation Y is
Lowo)=I1 [ §un(1/ s)exp(-y /0 dy ] %
- : (5)
I DYoL/ 6)exp(-th /o (y-th) / g)dy |

’

where, for i=12,--,

si(y) — [1 if (i—1)h{y<ih,
0 otherwise,

Substituting (1) for ¢, /=12, in (5) and taking logarithm, we obtain the log-likelihood
as a function of the unknown parameters a and 3:

log L(a,8)=bjlog(1—g,(a,8)) —bexp(—a—Bx,)
+ blog(1—g,(a,8)) —b,exp( —a—fx,) (6)

where b= 2'1 S, b=nh- [E':;(i-l)d‘, +§ 16;], b= iﬂ d, b,="h % (i-r-1)d,,
i= 1= 1 i=r

i==r+ =r+1

and  g(a,8)= exp(-h - exp(-a-x,)), i=12.

From (6), the Fisher information matrix I, for a single observation Y is obtained by
taking the expectations of the second partial and mixed partial derivatives of logL(a,8)
with respect to « and 2;

L= [ By(r)+By(r) Bi(1)x,4B,(r)x,
| ] 1)

Bi(r)x%,+B,(r)x, B(r)x+B,(r)x2
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where (h/ @)%t % (1-e™ % h 2 h/6, th/a
By(r)= SR and Ay (r)— R/ e
(1-e a')"" (l_e-h/ez)z

Since the information matrix I, obtained from n independent observations is n times
of I, the asymptotic variance of the MLE of the mean life at the design stress is then

given by

n- Vi(r)= n - Asvar(log g,)
=n - Asvar(3+5 - Xo)
=(14€)?/ Bir)+£* / By(1),

(8)

where & and B are MLE’s of « and 8. The following theorem gives the optimum stress

change point for D,

Theroem 2. The optimum stress change point r* for Ds is obtained uniquely by

N (] if Vio([r,]) < V3([I’1+1]) A
r= [[r1+1] if V3([r1]) > Vgl [r1+1]),

where [ - ] is the Gaussian symbol and

o . (1+€) 6  sinh(h/2p)
L= log{1+ ¢ o Sinh(h/292)}

Proof. Let
Ki=(14§)*- (6,/h)* - exp(h /@) - {1—exp(-h/g)}
and K,=§%g,/ h)? - exp(h/¢.) - {1—exp(-h/ )}
Then formula (8) can be rewritten as:

n - Va(r)=K,/ [1—exp(-th / g,) ]+Kexp(rh / 4,)

By differentiating n - V,(r) with respect to r, we then obtain

(9)

(10)

dln - Vy(r)]/dr=(h/8) - {—K, - exp(—th/a) / [1—exp(-th /g) +Kexp(th /8)} ,

(11)
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and d®[n - V,(r)] /dr*=(h/6,)*- {K, - exp(-th/g,) - (14+exp(-th/g,)) / [1-exp(-rth/
6:) *+Keexp(th / 6,)}. (12)

Since K;s are positive, d’[n - V4(r)] /dr?0, which means that (8) is a convex function
of r. Setting (11) to be zero and after some calculation, (11) becomes (9). This completes
the proof. 1B

From (9), it can be shown that;
1) r* increases in g, for given g,, §, and h,
ii) r* decreases in h for given g, g, and &
iii) }grg h - =g - log{(1+2¢) / &}==,

Figure 1 shows the effects of g, and h on r* for values of é=1, ¢,=100, and h=1, 5,
10. 1 is seen to be approximately linear in g, in the log scale, which can also be shown
by Taylor expansion of sinh(h / 2g,).

.
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Figure 1. Effect of g, and h on r* (§=1, §,=100)

Note that the optimum test plan obtained from Theorem 2 depends on ¢, and g, which
are usually unknown. To use the plan, one must have preestimates of g, and g,.
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Example 1. Suppose that we wish to test the life of diodes by simple time-step stress
test, and available preestimates of g, and g, are 1300(min.) and 150(min. ), respectively.
‘Also suppose that é==1.5, n=>5, and h=60(min). The optimal stress change point r* is then
obtained as 21 from(9). That is, the failures of the test units are observed at 60 minutes

intervals and the stress is elevated at the end of 21th interval, and inspection continues
periodically until all test units are found to be dead.

4. Periodically Observed Censored Data

Suppose that units are tested exactly as described in Section 3, but the process is ter-
minated at the end of £t interval, ie., at time ¢h: that is, the data are of type D,.

The likelihood function of a single observation Y is

L(gw2)= TL (Son(1/6)) - exp(-y /g)dy 1%

I (§on(1/6.) - exp(-th / g-(y~rhj /g,)dy ] * (13)

[exp{-rth / 9,-(£-1)h / g,} 1°¢ T}

where, for i=12, -+,
o‘,:[ 1 (i=1)h<y<ih,

0 otherwise,
and

d‘1+1=[ 1y i,
0 otherwise

By substituting (1) for g, 7=1,2, in (13) and taking logarithm, we obtain the log-like-
lihood function;

log L(a,8)= clog(1-g,(a,8)) —cexp(-a-Bx,)
+cilog(1-g,(«,8)) —c.exp(-a-8x%,), ()
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o £ 4
where ¢,= 3.6, ;= h - [21(1-1) dH—EHl'f)‘t-i-rd‘zﬂ‘], Co= _Zrﬂ g,
i=1 i= i=r =

]
c,=h-[ Z+1(i—r—1)c)‘,»+(l—r) dsy1], and gi(a,8)= exp(-h - exp(-a-8x,)), i=12.

=T

The Fisher information matix I is

I= [ Ci(1)+Cy(1,9) Cr)x+Cy(r,0)x, ] (15)
C(D)x+Co(r,0)%, C(r)xi+Cy(r,0)x3 J |
2.-h/6,4 -th/g
where C(r)= (h/6)%e" *(1-e ) B,
(1-e™M/%)z
h/g,)? -h/g th/g 4 _-(£-1)h/g
Cz(r,l)=( / 62) e(l_:h/o’)(zl e ) By(r){1—e /8,

Note that }im C,(r,€)=B,(r). The asymptotic variance V,(r,¢) of the MLE of the mean
life at the design stress is then given by

n- V,(r,/)= n - Asvar(log g,)
=n - Asvar(&-i—/;’- Xg) (16)
=(14+6)*/Ci(r)+&/ Cy(r,4),

where @ and £ are MLE’s of a and 8. The optimum stress change point for D, is given
by the following theorem whose proof is similar to that of Theorem 2 and therefore

omitted,

Theorem 3. " The optimum stress change point r * for D, is uniquely obtained by

r*:[[rzj if Vo([]{Vi[r+1])
(1] i Vi([L)Va(n+1]), an

where [ - ] is the Gaussian symbol and r, satisfies
-(&-t)h /g,

———CC‘(rzz Jlexp(rh/g)-1]- 1+&, — 1= (LH: )2
2(12,4) (2 (l-ei(lir’)h/g‘) é

The behavior of r* for D, can easily be inferred from the interrelations of D,’s, 1=1,---,
4. Note that:
i) li{’n Vi(r,£)= V,(r),
ii) im V(r,8)= V,(7) if lim rh= 7 (fixed) and lljm fh= T(fixed).
h—0 r—co —~00

h—p h—0



134 Do Sun Bai, Myung Soo Kim and Sang Hyuk Lee

Therefore the behavior of r* for D, is similar to that D, for small h, D; for large ¢, and
D, for small h and large ¢ simultaneously. »

Example 2. In Example 1, suppose that #=24. Then we obtain r*=14 from (17) Thus
the failure of the test units are observed at 60 minutes intervals and the stress is elevated
at the end of 14th interval and inspection continues periodically until 24th interval at
which the test is terminated.

5. Concluding Remarks

We have studied simple time-step stress test plans under the periodic observation. Two
types of data generated by observation schemes, periodically observed complete data and
periodically observed censored data are considered. For each type of data, optimum test
plan is obtained and its behaviors are studied. The optimum test plans obtained in Theo-
rems 2 and 3 depend on the values of model parameters g, and g,. To use the plan, the-
refore, these parameters must be approximated from experience, similar data, or a preli-
minary test data. Since incorrect choice of preestimates gives a test plan different from
the optimum plan and may result in poor estimates of the parameters of life distribution
at design stress, the effect of preestimates should be in vestigated.
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