• Title/Summary/Keyword: Cell-signaling

Search Result 2,572, Processing Time 0.028 seconds

The immune enhancement effect of Nelumbo nucifera Gaertner Seed Extract (NSE) in murine macrophage RAW 264.7 cells (RAW 264.7 대식세포에서 연자육 추출물(Nelumbo nucifera Gaertner Seed Extract, NSE)의 면역 증강 효과)

  • Se Jeong Kim;San Kim;Se Hyeon Jang;Sung Ran Yoon;Bo Ram So;Jeong Min Park;Jung A Ryu;Sung Keun Jung
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.23-28
    • /
    • 2023
  • Since the global shock caused by COVID-19, interest in immune-enhancing materials is rapidly increasing, therefore, the development of novel materials is necessary from the industrial and health perspectives. In this study, we selected Nelumbo nucifera Gaertner Seed Extract (NSE) and evaluated immune enhancement effect by using RAW 264.7 murine macrophage cells. NSE significantly up-regulated production of nitric oxide and reactive oxygen species without affecting cell viability in RAW 264.7 cells. Additionally, NSE exhibited an increase of inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 cells. The enzyme-linked immunosorbent assay results showed that NSE-treatment significantly enhanced production of interleukin 6 and tumor necrosis factor-α in RAW 264.7 cells. Furthermore, we observed that NSE significantly up-regulated phosphorylation of p65, I kappa B kinase α/β, and I kappa B (IκB) α as well as down-regulation of IκB α expression in RAW 264.7 cells. Our findings indicate that NSE could be the potential health-functional food material with capacity of improving immunity via Nuclear factor-kappa B signaling pathway.

Fermented Protaetia brevitarsis Larvae Ameliorates Chronic Ethanol-Induced Hepatotoxicity in Mice via AMPK and TLR-4/TGF-β1 Pathways

  • Hyo Lim Lee;Jong Min Kim;Min Ji Go;Seung Gyum Joo;Tae Yoon Kim;Han Su Lee;Ju Hui Kim;Jin-Sung Son;Ho Jin Heo
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.606-621
    • /
    • 2024
  • This study evaluated the hepatoprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced liver injury mice. As a result of amino acids in FPB, 18 types of amino acids including essential amino acids were identified. In the results of in vitro tests, FPB increased alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. In addition, FPB treatment increased cell viability on ethanol- and H2O2-induced HepG2 cells. FPB ameliorated serum biomarkers related to hepatoxicity including glutamic oxaloacetic transaminase, glutamine pyruvic transaminase, total bilirubin, and lactate dehydrogenase and lipid metabolism including triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Also, FPB controlled ethanol metabolism enzymes by regulating the protein expression levels of ADH, ALDH, and cytochrome P450 2E1 in liver tissue. FPB protected hepatic oxidative stress by improving malondialdehyde content, reduced glutathione, and superoxide dismutase levels. In addition, FPB reversed mitochondrial dysfunction by regulating reactive oxygen species production, mitochondrial membrane potential, and ATP levels. FPB protected ethanol-induced apoptosis, fatty liver, and hepatic inflammation through p-AMP-activated protein kinase and TLR-4/NF-κB signaling pathways. Furthermore, FPB prevented hepatic fibrosis by decreasing TGF-β1/Smad pathway. In summary, these results suggest that FPB might be a potential prophylactic agent for the treatment of alcoholic liver disease via preventing liver injury such as fatty liver, hepatic inflammation due to chronic ethanol-induced oxidative stress.

Isolation and Characterization of Defense Genes Mediated by a Pathogen-Responsive MAPK Cascade in Tobacco (담배에서 병원균에 반응하는 MAPK 신호전달체계에 의해 매개되는 방어 유전자들의 분리 및 특성화)

  • Jang, Eun-Kyoung;Kang, Eun-Young;Kim, Young-Cheol;Cho, Baik-Ho;Yang, Kwang-Yeol
    • Journal of Life Science
    • /
    • v.18 no.8
    • /
    • pp.1023-1030
    • /
    • 2008
  • NtMEK2, which is the tobacco MAPK kinase that is upstream of SIPK and WIPK, was identified using the dexamethasone (DEX)-inducible gain-of-function transgenic system. Expression of $NtNEK2^{DD}$, a constitutively active mutant of NtNEK2, leads to HR-like cell death, which indicates that the NtMEK2-SIPK/WIPK cascade controls defense responses in tobacco. However, little is known about the downstream target substrates or defense-related genes that are regulated by the NtMEK2-SIPK/ WIPK cascade. In this study, ACP-based differential display RT-PCR was used to isolate the downstream effectors mediated by the NtMEK2-SIPK/WIPK cascade in $NtNEK2^{DD}$ transgenic plants. The results identified 6 novel differentially expressed genes (DEGs). These included pathogen induced protein 2-4 (pI2-4), monoterpene synthase 2 (MTS2), seven in absentia protein (SINA), cell death marker protein 1 (CDM1), hydroxyproline-rich glycoprotein (HRGP) and unknown genes (DEG45). The induction of these genes was confirmed by RT-PCR of samples obtained from $NtNEK2^{DD}$ plants. Additionally, when compared with other isolated DEGs, the pI2-4, CDM1 and HRGP genes were significantly up-regulated in response to treatment with salicylic acid and tobacco mosaic virus. Taken together, these results suggest that three novel DEGs were regulated by the NtMEK2-SIPK/WIPK cascade involved in disease resistance in tobacco.

Microtubule-damaging Chemotherapeutic Agent-mediated Mitotic Arrest and Apoptosis Induction in Tumor Cells (미세소관-손상 항암제 처리에 의한 세포주기의 정지 및 에폽토시스 유도)

  • Jun, Do Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.376-386
    • /
    • 2016
  • Apoptosis induction has been proposed as an efficient mechanism by which malignant tumor cells can be removed following chemotherapy. The intrinsic mitochondria-dependent apoptotic pathway is frequently implicated in chemotherapy-induced tumor cell apoptosis. Since DNA-damaging agent (DDA)-induced apoptosis is mainly regulated by the tumor suppressor protein p53, and since more than half of clinical cancers possess inactive p53 mutants, microtubule-damaging agents (MDAs), of which apoptotic effect is mainly exerted via p53-independent routes, can be promising choice for cancer chemotherapy. Recently, we found that the apoptotic signaling pathway induced by MDAs (nocodazole, 17α-estradiol, or 2-methoxyestradiol) commonly proceeded through mitotic spindle defect-mediated prometaphase arrest, prolonged Cdk1 activation, and subsequent phosphorylation of Bcl-2, Mcl-1, and Bim in human acute leukemia Jurkat T cells. These microtubule damage-mediated alterations could render the cellular context susceptible to the onset of mitochondria-dependent apoptosis by triggering Bak activation, Δψm loss, and resultant caspase cascade activation. In contrast, when the MDA-induced Bak activation was inhibited by overexpression of anti-apoptotic Bcl-2 family proteins (Bcl-2 or Bcl-xL), the cells in prometaphase arrest failed to induce apoptosis, and instead underwent mitotic slippage and endoreduplication cycle, leading to formation of populations with 8N and 16N DNA content. These data indicate that cellular apoptogenic mechanism is critical for preventing polyploid formation following MDA treatment. Since the formation of polyploid cells, which are genetically unstable, may cause acquisition of therapy resistance and disease relapse, there is a growing interest in developing new combination chemotherapies to prevent polyploidization in tumors after MDA treatment.

Enhancing the Effects of Zerumbone on THP-1 Cell Activation (단핵구세포주의 활성에 미치는 Zerumbone의 영향)

  • Lee, Min Ho;Kim, Sa Hyun;Ryu, Sung Ryul;Lee, Pyeongjae;Moon, Cheol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.

Anti-Inflammatory Effect of Chondrus ocellatus Holmes Ethanol Extract on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells (Lipopolysaccharide로 유도된 RAW 264.7 세포와 마우스모델에 대한 진두발 에탄올 추출물의 항염증 효과)

  • Bae, Nan-Young;Kim, Min-Ji;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Sung, Nak-Yun;Byun, Eui-Hong;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • This study aimed to investigate the anti-inflammatory effect of the ethanol extract from Chondrus ocellatus Holmes (COHEE) in RAW 264.7 cells and in a mouse ear edema model, by measuring the production of lipopolysaccharide-induced inflammatory response mediators. There were no cytotoxic effects on the proliferation of macrophages treated with COHEE compared with the control. COHEE inhibited the production of nitric oxide and pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor-α, and IL-1β]. The extract also reduced the expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-κB p65, and phosphorylated mitogen-activated protein kinase in a dose-dependent manner. In the croton-oil-induced ear edema model, COHEE decreased the formation of mouse ear edema at the highest dose compared with the control, and histological analysis revealed that the epidermal/dermal tissue thickness and mast cell numbers were reduced. Therefore, these results suggest that COHEE may be a promising topical anti-inflammatory therapeutic material through its action of modulating NF-κB and the MAPK signaling pathway.

Anti-Inflammatory Activity of Dichloromethane Fraction from Katsuwonus pelamis Heart in LPS-Induced RAW 264.7 Cells and Mouse Ear Edema (Lipopolysaccharide로 자극된 RAW 264.7 세포와 마우스 귀부종 모델에 대한 참치 심장 Dichloromethane 분획물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Choi, Hyeun-Deok;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Sung, Nak-Yun;Byun, Eui-Hong;Nam, Hee-Sup;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.101-109
    • /
    • 2017
  • This study investigated the effect of the dichloromethane fraction form Katsuwonus pelamis heart on anti-inflammatory responses in lipopolysaccharide-stimulated RAW 264.7 cells and mouse models. Ethanol extract was partitioned with dichloromethane, ethyl acetate, butanol, and water. Among the fractions, the dichloromethane fraction showed a significant decrease in nitric oxide (NO) and pro-inflammatory cytokines [interleukin (IL)-6, $IL-1{\beta}$, and tumor necrosis $factor-{\alpha}$] production compared to ethanol extract. The dichloromethane fraction attenuated the expression of inducible nitric oxide synthase and nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) p65 proteins in a dose-dependent manner. In addition, the expression of phosphorylation of mitogen-activated protein kinases (MAPKs) was also inhibited by the dichloromethane fraction. Moreover, the administration of 10, 50, and 250 mg/kg body weight-dose dependently inhibited the formation of edema by croton-oil and the application of dichloromethane (2 mg/ear) significantly reduced epidermal and dermal thickness and the infiltrated mast cell numbers. Therefore, the dichloromethane fraction exhibited an anti-inflammation effect by inhibiting $NF-{\kappa}B$ and MAPK signaling activation in macrophages.

Genome-Wide Analysis of DNA Methylation before- and after Exercise in the Thoroughbred Horse with MeDIP-Seq

  • Gim, Jeong-An;Hong, Chang Pyo;Kim, Dae-Soo;Moon, Jae-Woo;Choi, Yuri;Eo, Jungwoo;Kwon, Yun-Jeong;Lee, Ja-Rang;Jung, Yi-Deun;Bae, Jin-Han;Choi, Bong-Hwan;Ko, Junsu;Song, Sanghoon;Ahn, Kung;Ha, Hong-Seok;Yang, Young Mok;Lee, Hak-Kyo;Park, Kyung-Do;Do, Kyoung-Tag;Han, Kyudong;Yi, Joo Mi;Cha, Hee-Jae;Ayarpadikannan, Selvam;Cho, Byung-Wook;Bhak, Jong;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.210-220
    • /
    • 2015
  • Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethy-lated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.

Isolation and Characterization of a Novel Transcription Factor ATFC Activated by ER Stress from Bombyx mori Bm5 Cell Lines (누에 배양세포(Bm5)로부터 분리한 새로운 전사제어인자 ATFC의 특성분석)

  • 구태원;윤은영;김성완;최광호;황재삼;박수정;권오유;강석우
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). To obtain genes related to UPR from B. mori, the cDNA library was constructed with mRNA isolated from Bm5 cell lines in which N-glycosylation was inhibited by tunicamycin treatment. From the cDNA library, we selected 40 clones that differentially expressed when cells were treated with tunicamycin. Among these clones, we have isolated ATFC gene showing similarity with Hac1p, encoding a bZIP transcription factor of 5. cerevisiae. Basic-leucine zipper (bZIP) domain in amino acid sequences of ATFC shared homology with yeast Hac1p. Also, ATFC is up-regulated by accumulation of unfolded proteins in the ER through the treatment of ER stress drugs. Therefore we suggest that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.