DOI QR코드

DOI QR Code

Enhancing the Effects of Zerumbone on THP-1 Cell Activation

단핵구세포주의 활성에 미치는 Zerumbone의 영향

  • Lee, Min Ho (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Kim, Sa Hyun (Department of Clinical Laboratory Science, Semyung University) ;
  • Ryu, Sung Ryul (Department of Clinical Laboratory Science, Semyung University) ;
  • Lee, Pyeongjae (Department of Natural Medicine Resources, Semyung University) ;
  • Moon, Cheol (Department of Clinical Laboratory Science, Semyung University)
  • 이민호 (연세대학교 보건과학대학 임상병리학과) ;
  • 김사현 (세명대학교 임상병리학과) ;
  • 유성률 (세명대학교 임상병리학과) ;
  • 이평재 (세명대학교 자연약재학과) ;
  • 문철 (세명대학교 임상병리학과)
  • Received : 2017.01.05
  • Accepted : 2017.01.26
  • Published : 2017.03.31

Abstract

Zerumbone is a major component of the essential oil from Zingiber zerumbet Smith, which is a kind of wild ginger. In addition, various biological functions, such as liver protection, pain relief, atherosclerosis, and antimicrobial activity have been reported. It is also known to be effective in the proliferation of immune cells and the expression of cytokines. In this study, we investigated the effects of zerumbone on monocyte activation. First, it was confirmed that the proliferation of THP-1 cells was increased by zerumbone. The strongest increase in THP-1 proliferation after lipopolysaccharide treatment was observed at $5{\mu}M$ zerumbone treatment, and the increase of cell proliferation without lipopolysaccharide was the highest at $10{\mu}M$. Conversely, when treated with $50{\mu}M$ zerumbone, a rapid decrease of proliferation was observed regardless of the presence of lipopolysaccharide (LPS). The phosphorylation of signaling protein, Erk, induced by LPS was also increased by zerumbone. The strongest increase in phosphorylation was observed when treated with $50{\mu}M$ of zerumbone with reduced proliferation. The activity of transcription factor $NF-{\kappa}B$ was not significantly altered by zerumbone alone, but increased when treated with lipopolysaccharide. Furthermore, the transcription of the inflammatory cytokines $TNF-{\alpha}$ and IL-8, which are regulated by $NF-{\kappa}B$, is also increased by zerumbone. These results suggest that zerumbone can enhance the proliferation and activity of monocytes. Furthermore, it is believed that zerumbone can enhance rthe immune responses through increased monocyte activity in bacterial infections with LPS, thereby helping to treat effective bacteria.

Zerumbone은 야생 생강의 일종인 Zingiber zerumbet Smith의 정유(essential oil)에 포함되어 있는 주요성분으로, 다양한 연구를 통해 혈액종양을 포함한 암, 염증질환, 활성산소 감소 등에 이용할 가능성이 꾸준히 제기되어왔다. 또한 면역세포들의 증식과 세포주기진행, 사이토카인의 생성 발현에도 효과를 나타낸다고 알려져 있다. 이외에도 간보호, 통증완화, 항동맥경화, 항미생물 등 다양한 생물학적 기능이 보고되었다. 본 연구에서는 zerumbone이 단구의 활성과 기능에 어떠한 영향을 미치는지 알아보고자 하였다. 우선, 단구세포주 THP-1세포의 활성이 zerumbone에 의해 증가되는 것을 확인하였다. LPS 처리 후 가장 강한 THP-1 증식 증가는 $5{\mu}M$의 zerumbone 처리 시 나타났으며, 세포 단독 증식 증가는 $10{\mu}M$의 zerumbone 처리 시 가장 증가하였다. 반면에 $50{\mu}M$ 의 zerumbone 처리 시에는 LPS 존재 여부와 관계없이 급격한 증식 감소가 관찰되었다. LPS의 처리에 의해 유도되는 신호전달 단백질 Erk의 인산화도 zerumbone에 의해 증가되었다. 가장 강한 인산화 증가는 증식 감소가 나타난 $50{\mu}M$의 zerumbone을 처리했을 때 관찰되었다. 전사인자 $NF-{\kappa}B$의 활성은 zerumbone 단독 처리 시에는 큰 변화가 없었지만, LPS 와 동시에 처리했을 경우 증가하는 것으로 관찰되었다. 나아가, $NF-{\kappa}B$에 의해 발현이 조절되는 염증 사이토카인 $TNF-{\alpha}$, IL-8의 전사도 zerumbone 에 의해 증가되는 것을 확인하였다. 이와 같은 결과를 통해 zerumbone이 단핵구의 증식과 활성을 강화시킬 수 있음을 확인하였다. 나아가, zerumbone이 LPS 를 보유한 세균 감염 시 단핵구 활성 증가를 통하여 효과적인 탐식과 면역반응을 강화시켜 효과적인 세균 처리에 도움을 줄 수 있을 것으로 여겨진다.

Keywords

References

  1. Murakami A, Ohigashi H. Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells. Biol Chem. 2006;387(4):387-392. https://doi.org/10.1515/BC.2006.052
  2. Sulaiman MR, Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Tasrip NA, et al. Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice. Fitoterapia. 2010;81(7):855-858. https://doi.org/10.1016/j.fitote.2010.05.009
  3. Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Ming OH, Khalid S, et al. Zerumbone-induced antinociception: involvement of the L-arginine-nitric oxide-cGMP -PKC-K+ ATP channel pathways. Basic Clin Pharmacol Toxico. 2011;l108(3):155-162.
  4. Keong YS, Alitheen NB, Mustafa S, Abdul Aziz S, Abdul Rahman M, Ali AM. Immunomodulatory effects of zerumbone isolated from roots of Zingiber zerumbet. Pak J Pharm Sci. 2010;23(1):75-82.
  5. Kitayama T, Iwabuchi R, Minagawa S, Shiomi F, Cappiello J, Sawada S, et al. Unprecedented olefin-dependent histidinekinase inhibitory of zerumbone ring-opening material. Bioorg Med Chem Lett. 2004;23:5943-5946.
  6. Eguchi A, Kaneko Y, Murakami A, Ohigashi H. Zerumbone suppresses phorbol ester-induced expression of multiple scavenger receptor genes in THP-1 human monocytic cells. Biosci Biotechnol Biochem. 2007;71(4):935-945. https://doi.org/10.1271/bbb.60596
  7. Sulaiman MR, Perimal EK, Zakaria ZA, Mokhtar F, Akhtar MN, Lajis NH, et al. Preliminary analysis of the antinociceptive activity of zerumbone. Fitoterapia. 2009;80(4):230-232. https://doi.org/10.1016/j.fitote.2009.02.002
  8. Taha MM, Abdul AB, Abdullah R, Ibrahim TA, Abdelwahab SI, Mohan S. Potential chemoprevention of diethylnitrosamine- initiated and 2-acetylaminofluorene-promoted hepatocarcinogenesis by zerumbone from the rhizomes of the subtropical ginger (Zingiber zerumbet). Chem Biol Interact. 2010;186(3):295-305. https://doi.org/10.1016/j.cbi.2010.04.029
  9. Shanmugam MK, Rajendran P, Li F, Kim C, Sikka S, Siveen KS, et al. Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model. Mol Carcinog. 2015;54(10):971-985. https://doi.org/10.1002/mc.22166
  10. Zhang S, Liu Q, Liu Y, Oiao H, Liu Y. Zerumbone, a Southeast Asian ginger sesquiterpene, induced apoptosis of pancreatic carcinoma cells through p53 signaling pathway. Evid Based Complement Alternat Med. 2012;2012:936030.
  11. Murakami A, Hayashi R, Tanaka T, Kwon KH, Ohigashi H, Safitri R. Suppression of dextran sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger sesquiterpene, and nimesulide: separately and in combination. Biochem Pharmacol. 2003;66(7):1253-1261. https://doi.org/10.1016/S0006-2952(03)00446-5
  12. Murakami A, Song M, Katsumata S, Uehara M, Suzuki K, Ohigashi H. Citrus nobiletin suppresses bone loss in ovariectomized ddY mice and collagen-induced arthritis in DBA/1J mice: possible involvement of receptor activator of NF-kappaB ligand (RANKL)-induced osteoclastogenesis regulation. Biofactors. 2007;30(3):179-192. https://doi.org/10.1002/biof.5520300305
  13. Moon C. Zerumbone's effects on jurkat cell proliferation and migration. Korean J Clin Lab Sci. 2015;47(4):182-187. https://doi.org/10.15324/kjcls.2015.47.4.182
  14. Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: An in vitro cell model for immune modulation approach. International Immunopharmacology. 2014;23(1):37-45. https://doi.org/10.1016/j.intimp.2014.08.002
  15. Chanput W, Mes J, Vreeburg RAM, Savelkoul HFJ, Wichers HJ. Transcription profiles of LPS-stimulated THP-1 monocytes and macrophages: a tool to study inflammation modulating effects of food-derived compounds. Food & Function. 2010;1(3):254-261. https://doi.org/10.1039/c0fo00113a
  16. Abdelwahab SI, Abdul AB, Mohan S, Taha MM, Ibrahim MY, Mariod AA. Zerumbone induces apoptosis in T-acute lymphoblastic leukemia cells. Leuk Res. 2011;35(2):268-271. https://doi.org/10.1016/j.leukres.2010.07.025
  17. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cellular Singnalling. 2001;13:85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  18. Lawrence T. The nuclear factor NF-kappa B pathway in inflammation. Cold Spring Harb Perspect Bio. 2009;1:a001651.

Cited by

  1. Zerumbone 처리에 따른 Helicobacter pylori의 단백질 비교분석 vol.50, pp.3, 2018, https://doi.org/10.15324/kjcls.2018.50.3.275
  2. Zerumbone, a Tropical Ginger Sesquiterpene of Zingiber officinale Roscoe, Attenuates α-MSH-Induced Melanogenesis in B16F10 Cells vol.19, pp.10, 2017, https://doi.org/10.3390/ijms19103149
  3. Triglyceride Down-regulates Expression of MSR-1 in PMA-induced THP-1 Macrophages vol.26, pp.3, 2020, https://doi.org/10.15616/bsl.2020.26.3.164