• Title/Summary/Keyword: Cell-division-cycle

Search Result 338, Processing Time 0.027 seconds

Induction of cell cycle arrest and apoptosis by an indirubin analog, a CDK inhibitor, in human lung cancer cells

  • Lee, Jong-Won;Moon, Myung-Ju;Kim, Yong-Chul;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.91.2-91.2
    • /
    • 2003
  • Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation. Inhibition of CDK is a promising target in development of anti-cancer agents. An indirubin analog (AGM01l), a CDK inhibitor, is a synthetic compound that inhibits human cancer cell growth in vitro. AGM01l showed a potent cytotoxicity in cultured human cancer cell lines (IC$\sub$50/ = 5.43 ${\mu}$M for A549, human colon cancer cell; IC$\sub$50/ = 1.21 ${\mu}$M for SNU-638, human stomach cancer cell; IC$\sub$50/ 9.23 ${\mu}$M for HL-60, human leukemia cell). (omitted)

  • PDF

Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel (304 스테인리스강의 300℃에서 저주기 피로수명 증가)

  • Kim, Dae Whan;Han, Chang Hee;Lee, Bong Sang
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.391-396
    • /
    • 2009
  • Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

Potentiation of Ceramide-Induced Apoptosis by $p27^{kip1}$ Overexpression

  • Kim Hae Jong;Ghil Kyung Chul;Kim Moo Sung;Yeo Seong Hyun;Chun Young Jin;Kim Mie Young
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.87-92
    • /
    • 2005
  • The cyclin-dependent kinase inhibitor$p27^{kip1}$(p27) has been implicated in the regulation of cell cycle and apoptosis. Recently, we have demonstrated that ceramide induces apoptotic cell death associated with increase in the level of p27 in HL-60 cells. In the present study, we showed that overexpression of p27 increases ceramide-induced apoptotic cell death in HL-60 cells. Furthermore, overexpression of p27 accelerated DNA fragmentation, PARP cleavage and cytochrome c release induced by ceramide. In addition, ceramide induced Sax expression independent of p27. These findings indicate that enhanced effect on apoptosis by p27 is associated with mitochondrial signaling which involves cytochrome c release.

Cell Cycle Arrest Effects by Artemisia annua Linné in Hep3B Liver Cancer Cell (Hep3B 간암세포에서 개똥쑥 추출물에 의한 Cell Cycle Arrest 효과)

  • Kim, Eun Ji;Kim, Guen Tae;Kim, Bo Min;Lim, Eun Gyeong;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min;Yoo, Je-Geun
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.175-181
    • /
    • 2015
  • Cells proliferate via repeating process that growth and division. This process is G1, S, G2 and M four phases consists. Monitoring the progression of the cell cycle is a specific step that to be a continuous process is repeated to adjust the start of the next step. At this time, this process is called a Checkpoint. Currently, there are three known checkpoints that G1-S phase, G2-M phase, and the M phase. In this study, we confirmed that cell cycle arrest effects by ethanol extracts of Artemisia annua Linne (AAE) in Hep3B liver cancer cells. AAE was regulated proteins which involved in cell cycle such as pAkt, pMDM2, p53, p21, pCDK2 (T14/Y15). AAE induced cell cycle arrest in G1 checkpoint through phosphorylation of CDK2. Akt and p53 upstream is inhibited by AAE and p53 activated by non-activated pMDM2, p53 inhibitor. Thereby, activated p53 is transcript to p21 and activated p21 protein is combined with Cyclin E-pCDK2 complex. Therefore, we confirmed that AAE-induced cell cycle arrest was occurred by p21-Cyclin E-pCDK2 complex by inhibition of pAkt signal. Because of this cell cycle can't pass to S phase from G1 phase.

The Flower Extract of Abelmoschus manihot (Linn.) Increases Cyclin D1 Expression and Activates Cell Proliferation

  • Park, Yea-In;Cha, Yeo-Eun;Jang, Minsu;Park, Rackhyun;Namkoong, Sim;Kwak, Jongbock;Jang, Ik-Soon;Park, Junsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1044-1050
    • /
    • 2020
  • Abelmoschus manihot (Linn.) is a medicinal herbal plant that is commonly used to treat chronic kidney disease and hepatitis. However, its effect on cell proliferation has not been clearly revealed. In this report, we sought to determine the effect of the flower extract of A. manihot (FA) on cell proliferation. Based on our findings, FA increased the proliferation of human diploid fibroblast (HDF) and HEK293 cells. Through cell cycle analysis, FA was found to increase the number of HDF cells in the S phase and G2/M phase. FA also increased the expression of cyclin D1 and enhanced the migration of HDF cells. By administering FA to HDF cells with ≥30 passages, a decrease in the number of senescence-associated β galactosidase-positive cells was observed, thereby indicating that FA can ameliorate cellular senescence. Collectively, our findings indicate that FA increases cyclin D1 expression and regulates cell proliferation.

Expressed Sequence Tag Analysis of Toxic Alexandrium tamarense and Identification of Saxitoxin Biosynthetic Genes (독성 Alexandrium tamarense 의 EST 분석 및 삭시톡신 생합성 유전자의 확인)

  • Chang, Man;Lee, Juyun;Chung, Youngjae;Lee, Gunsup;Kim, Dongguin;Lee, Taek-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3582-3588
    • /
    • 2013
  • Expressed sequence tag (EST) library was constructed from A. tamarense. Base sequences of EST clones were analyzed and saxitoxin biosynthesis-related genes were cloned. Sequences of 827 clones were analyzed and 564 EST were functionally clustered using Blast searches against GenBank. Main genes in the EST had functions on cellular organization, cell metabolism, energy, cell cycle and DNA processing, cellular transport and transport, cell rescue, defense, death and aging, and transcription. Moreover, expression of S-adenosylmethionine synthetase and H2A histone family genes were increased in the toxic A. tamarense. These results show that two genes could be a good biomarkers for the detection of saxitoxin biosynthesis in the A. tamarense.

Polo-Like Kinases (Plks), a Key Regulator of Cell Cycle and New Potential Target for Cancer Therapy

  • Lee, Su-Yeon;Jang, Chuljoon;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Cell cycle process is regulated by a number of protein kinases and among them, serine/threonine kinases carry phosphate group from ATP to substrates. The most important three kinase families are Cyclin-dependent kinase (Cdk), Polo-like kinase (Plk), and Aurora kinase. Polo-like kinase family consists of 5 members (Plk1-Plk5) and they are involved in multiple functions in eukaryotic cell division. It regulates a variety of aspects such as, centrosome maturation, checkpoint recovery, spindle assembly, cytokinesis, apoptosis and many other features. Recently, it has been reported that Plks are related to tumor development and over-expressed in many kinds of tumor cells. When injected the anti-Plk antibody into human cells, the cells show aneuploidy, and if inhibit Plks, most of the mitotic cell division does not proceed properly. For that reasons, many inhibitors of Plk have been recently emerged as new target for remedy of the cancer therapeutic research. In this paper, we reviewed briefly the characteristics of Plk families and how Plks work in regulating cell cycles and cancer formation, and the possibilities of Plks as target for cancer therapy.

Environmental Life Cycle Assessment (LCA) of Polymer Electrolyte Membrane Fuel Cell (PEMFC) System (Polymer Electrolyte Membrane Fuel Cell 시스템의 환경 전과정평가)

  • KIM, HYOUNGSEOK;HONG, SEOKJIN;HUR, TAK
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.111-116
    • /
    • 2018
  • The environmental impacts of a 1 kW polymer electrolyte membrane fuel cell (PEMFC) system are quantitatively assessed by performing a Life Cycle Assessment (LCA) study. A PEMFC system produces electricity and heat simultaneously, so an appropriate allocation of associated inputs and outputs is performed between the electricity and heat produced. The environmental impacts of the PEMFC system on the impact categories such as global warming (GW), abiotic depletion (AD), acidification (AC), and eutrophication (EU) are assessed from the life cycle impact assessment. The impact indicator results of the impact assessment on these impact categories are obtained as $3.70E-01kg\;CO_2\;eq./kWh$, 1.86E-03 kg Sb eq./kWh, $4.09E-04kg\;SO_2\;eq./kWh$, and $1.88E-05kg\;PO_4{^{3-}}/kWh$, respectively. For all impact categories studied the most influential stage is the operation stage, which accounts for 98.8%, 98.7%, 70.3%, and 62.3% of the total impact on GW, AD, AC, and EU, respectively. For the impact categories of AD, AC, and EU, most of the environmental impacts during the operation stage is attributed to the production of city gas. However, for the impact category of GW, $CO_2$ emission from the reforming process of city gas is the main reason for the largest contribution of the operation stage to the total impact results.

Dudleya brittonii extract promotes survival rate and M2-like metabolic change in porcine 3D4/31 alveolar macrophages

  • Kim, Hyungkuen;Jeon, Eek Hyung;Park, Byung-Chul;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1789-1800
    • /
    • 2019
  • Objective: Although alveolar macrophages play a key role in the respiratory immunity of livestock, studies on the mechanism of differentiation and survival of alveolar macrophages are lacking. Therefore, we undertook to investigate changes in the lipid metabolism and survival rate, using 3D4/31 macrophages and Dudleya brittonii which has been used as a traditional asthma treatment. Methods: 3D4/31 macrophages were used as the in vitro porcine alveolar macrophages model. The cells were activated by exposure to phorbol 12-myristate 13-acetate (PMA). Dudleya brittonii extraction was performed with distilled water. For evaluating the cell survival rate, we performed the water-soluble tetrazolium salt cell viability assay and growth curve analysis. To confirm cell death, cell cycle and intracellular reactive oxygen species (ROS) levels were measured using flow cytometric analysis by applying fluorescence dye dichlorofluorescein diacetate and propidium iodide. Furthermore, we also evaluated cellular lipid accumulation with oil red O staining, and fatty acid synthesis related genes expression levels using quantitative polymerase chain reaction (qPCR) with SYBR green dye. Glycolysis, fatty acid oxidation, and tricarboxylic acid (TCA) cycle related gene expression levels were measured using qPCR after exposure to Dudleya brittonii extract (DB) for 12 h. Results: The ROS production and cell death were induced by PMA treatment, and exposure to DB reduced the PMA induced downregulation of cell survival. The PMA and DB treatments upregulated the lipid accumulation, with corresponding increase in the acetyl-CoA carboxylase alpha, fatty acid synthase mRNA expressions. DB-PMA co-treatment reduced the glycolysis genes expression, but increased the expressions of fatty acid oxidation and TCA cycle genes. Conclusion: This study provides new insights and directions for further research relating to the immunity of porcine respiratory system, by employing a model based on alveolar macrophages and natural materials.

Inhibition of Overexpressed CDC-25.1 Phosphatase Activity by Flavone in Caenorhabditis elegans

  • Kim, Koo-Seul;Kawasaki, Ichiro;Chong, Youhoon;Shim, Yhong-Hee
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.345-350
    • /
    • 2009
  • We previously reported that flavone induces embryonic lethality in Caenorhabditis elegans, which appeared to be the result of cell cycle arrest during early embryogenesis. To test this possibility, here we examined whether flavone inhibits the activity of a key cell cycle regulator, CDC-25.1 in C. elegans. A gain-of-function cdc-25.1 mutant, rr31, which exhibits extra cell divisions in intestinal cells, was used to test the inhibitory effects of flavone on CDC-25 activity. Flavone inhibited the extra cell divisions of intestinal cells in rr31, and modifications of flavone reduced the inhibitory effects. The inhibitory effects of flavone on CDC-25.1 were partly, if not completely, due to transcriptional repression.