Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel

304 스테인리스강의 300℃에서 저주기 피로수명 증가

  • Kim, Dae Whan (Korea Atomic Energy Research Institute, Nuclear Materials Research Division) ;
  • Han, Chang Hee (Korea Atomic Energy Research Institute, Nuclear Materials Research Division) ;
  • Lee, Bong Sang (Korea Atomic Energy Research Institute, Nuclear Materials Research Division)
  • 김대환 (한국원자력연구소 원자력재료연구부) ;
  • 한창희 (한국원자력연구소 원자력재료연구부) ;
  • 이봉상 (한국원자력연구소 원자력재료연구부)
  • Received : 2009.03.18
  • Published : 2009.07.25

Abstract

Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. V. S. Sirinivasan, R. Sandhya, K. Bhanu Sanakara Rao, S.L. Mannan, and K. S. Raghavan, Int. J. Fatigue 13, 471(1991) https://doi.org/10.1016/0142-1123(91)90482-E
  2. R. Alain, P. Violan, and J. Mendez, Mat. Sci. Eng. A229, 87(1997) https://doi.org/10.1016/S0921-5093(96)10558-X
  3. M. Gerland, R. Alain, B. Ait Saadi, and J. Mendez, Mat.Sci. Eng. A229, 68 (1997) https://doi.org/10.1016/S0921-5093(96)10560-8
  4. D. W. Kim, W. S. Ryu, J. H. Hong, I. H. Kuk, and S. K. Choi, J. Kor. Inst. Met. & Mater. 36, 1728 (1998)
  5. F. L. Liang and C. Laird, Mat. Sci. Eng. A117, 95 (1989) https://doi.org/10.1016/0921-5093(89)90090-7
  6. H. Teranishi and A. J. Mcevily, Met. Trans. 10A, 1806 (1979) https://doi.org/10.1007/BF02811723
  7. D. J. Dugette and M. Gell, Met. Trans. 2, 1325 (1971)
  8. L. F. Coffin, Jr., Met. Trans. 3, 1777 (1972) https://doi.org/10.1007/BF02642561
  9. C. Laird, Philip Charsley and Hael Mughrabi, Mater. Sci. Eng. 81, 433 (1986) https://doi.org/10.1016/0025-5416(86)90281-8
  10. K. Obrtlik, T. Kruml, and J. Polak, Mater. Sci. Eng. A187, 1(1994) https://doi.org/10.1016/0921-5093(94)90325-5
  11. A. W. Thompson, Met. Trans. 8A, 833 (1977)
  12. B. Bay, N. Hansen, D. A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40, 205 (1992) https://doi.org/10.1016/0956-7151(92)90296-Q
  13. G. Baudry and A. Pineau, Mater. Sci. Eng. A28, 229 (1977) https://doi.org/10.1016/0025-5416(77)90176-8
  14. G. R. Chanani and S. D. Antolovich, Metall. Trans. 5A, 217 (1974)
  15. D. Hennessy, G. Steckel, and C. Altstetter, Metall. Trans. 7A, 415 (1976) https://doi.org/10.1007/BF02642838
  16. T. H. Lee, S. J. Kim, H. S. Kim, and Y. C. Yang, J. Kor. Inst. Met. & Mater. 38, 434 (2000)
  17. M. Bayerlein, H. J. Christ, and H. Mughrabi, Mater. Sci. Eng. A114, L11 (1989) https://doi.org/10.1016/0921-5093(89)90871-X
  18. M. Bayerlein and H. Mughrabi, Mater. Sci. Eng. A159, 35(1992) https://doi.org/10.1016/0921-5093(92)90396-I
  19. C. Bathias and R. M. Pelloux, Metall. Trans. 4A, 1265 (1973) https://doi.org/10.1007/BF02644521
  20. A. G. Pineau and R. M. Pelloux, Metall. Trans. 5A, 1103 (1974) https://doi.org/10.1007/BF02644322
  21. P. S. Maiya, Scrip. Metall. 9, 1141 (1975) https://doi.org/10.1016/0036-9748(75)90394-4