Browse > Article

Increase of Low Cycle Fatigue Life at 300℃ for Type 304 Stainless Steel  

Kim, Dae Whan (Korea Atomic Energy Research Institute, Nuclear Materials Research Division)
Han, Chang Hee (Korea Atomic Energy Research Institute, Nuclear Materials Research Division)
Lee, Bong Sang (Korea Atomic Energy Research Institute, Nuclear Materials Research Division)
Publication Information
Korean Journal of Metals and Materials / v.47, no.7, 2009 , pp. 391-396 More about this Journal
Abstract
Tensile, low cycle fatigue, and fatigue crack growth rate tests were conducted at RT and $300^{\circ}C$ for type 304 stainless steel. Tensile was tested under displacement control and low cycle fatigue was tested under strain control. Fatigue crack growth rate test was conducted under load control and crack was measured by DCPD method. Yield strength and elongation decreased at $300^{\circ}C$. Dynamic strain aging was not detected at $300^{\circ}C$. Low cycle fatigue life increased but fatigue strength decreased at $300^{\circ}C$. Fatigue crack growth rate increased at $300^{\circ}C$. Dislocation structures were mixed with cell and planar and did not change with temperature. Grain size did not change but plastic strain increased at $300^{\circ}C$. Strain induced martensite after low cycle fatigue test increased at RT but decreased at $300^{\circ}C$. It was concluded that the increase of low cycle fatigue life at $300^{\circ}C$ was due to the decrease of strain induced martensite at which crack was initiated.
Keywords
304; stainless steel; fatigue; strain induced martensite; temperature;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 F. L. Liang and C. Laird, Mat. Sci. Eng. A117, 95 (1989)   DOI   ScienceOn
2 D. J. Dugette and M. Gell, Met. Trans. 2, 1325 (1971)
3 A. G. Pineau and R. M. Pelloux, Metall. Trans. 5A, 1103 (1974)   DOI
4 G. R. Chanani and S. D. Antolovich, Metall. Trans. 5A, 217 (1974)
5 D. Hennessy, G. Steckel, and C. Altstetter, Metall. Trans. 7A, 415 (1976)   DOI   ScienceOn
6 C. Bathias and R. M. Pelloux, Metall. Trans. 4A, 1265 (1973)   DOI
7 T. H. Lee, S. J. Kim, H. S. Kim, and Y. C. Yang, J. Kor. Inst. Met. & Mater. 38, 434 (2000)
8 P. S. Maiya, Scrip. Metall. 9, 1141 (1975)   DOI   ScienceOn
9 M. Gerland, R. Alain, B. Ait Saadi, and J. Mendez, Mat.Sci. Eng. A229, 68 (1997)   DOI   ScienceOn
10 B. Bay, N. Hansen, D. A. Hughes, and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 40, 205 (1992)   DOI   ScienceOn
11 R. Alain, P. Violan, and J. Mendez, Mat. Sci. Eng. A229, 87(1997)   DOI   ScienceOn
12 C. Laird, Philip Charsley and Hael Mughrabi, Mater. Sci. Eng. 81, 433 (1986)   DOI   ScienceOn
13 K. Obrtlik, T. Kruml, and J. Polak, Mater. Sci. Eng. A187, 1(1994)   DOI   ScienceOn
14 V. S. Sirinivasan, R. Sandhya, K. Bhanu Sanakara Rao, S.L. Mannan, and K. S. Raghavan, Int. J. Fatigue 13, 471(1991)   DOI   ScienceOn
15 L. F. Coffin, Jr., Met. Trans. 3, 1777 (1972)   DOI
16 G. Baudry and A. Pineau, Mater. Sci. Eng. A28, 229 (1977)   DOI   ScienceOn
17 H. Teranishi and A. J. Mcevily, Met. Trans. 10A, 1806 (1979)   DOI
18 D. W. Kim, W. S. Ryu, J. H. Hong, I. H. Kuk, and S. K. Choi, J. Kor. Inst. Met. & Mater. 36, 1728 (1998)
19 A. W. Thompson, Met. Trans. 8A, 833 (1977)
20 M. Bayerlein and H. Mughrabi, Mater. Sci. Eng. A159, 35(1992)   DOI   ScienceOn
21 M. Bayerlein, H. J. Christ, and H. Mughrabi, Mater. Sci. Eng. A114, L11 (1989)   DOI   ScienceOn