• Title/Summary/Keyword: Cell-division-cycle

Search Result 338, Processing Time 0.034 seconds

Morphological Characteristics of Brown Alga Spatoglossum crassum Tanaka (Dictyotaceae, Dictyotales), New to Korea

  • Hwang, Il-Ki;Kim, Hyung-Seop;Lee, Wook-Jae
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.191-199
    • /
    • 2004
  • Morphological and phonological characteristics of brown alga Spatoglossum crassum Tanaka new to Korea were described based on the field and the indoor cultured plants. The taxonomic characteristics of the plants were agreed to those from the type locality-submerged reproductive organs in cortex, anatomical features, and absence of phaeophycean hairs on the surface. But they have rudimentary midrib on lower portion of thallus. We can observe the young plants on November, adult ones in June, and senile ones in August. This species has an annual life-cycle in the field, starting with germ lings in early November. The differentiation of thallus is quite different from other species of genera in tribe Zonarieae, e.g. Zonaria and Homoeostrichus. Three different tissues, meristoderm, cortex and medulla are discerned. The outmost cortical one celled layer as a meristoderm produce cortex by unequal periclinal division. In the apical cell division, the primary inner cells are developed into 3-4 cell layered medulla of thallus. The distribution of this species extends from Korea to Shizuoka Peninsula (34°40'N) Japan, which is the type locality of this species.

Role of Spc105p in the maintenance of genome stability

  • Sung, Hye-Ran;Han, Kyung-Cheol;Hong, Jin-Tae;Lee, Chong-Kil;Song, Suk-Gil
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.162.2-162.2
    • /
    • 2003
  • Microtubule-organizing center (MOTC) plays pivotal roles in cell division process. Integrity of the spindle pole body (SPB) in Saccharomyces cerevisiae is required for migration and separation of sister chromatids in mitotic phase. Role of an essential SPB component, Spcl05, is poorly understood. Here we show that throughout all stage of cell division cycle, GFP-tagged Spcl05p localizes at SPB and its protein stability is fluctuated with mitosis-specific modifications. To gain new insights into the function of Spc105, we generated and characterized novel temperature sensitive spc105 mutants. (omitted)

  • PDF

Effects of Sophorae Radix on Human Colorectal Adenocarcinoma Cells (고삼의 인체 대장암세포에 미치는 효과)

  • Kim, Min-Chul;Lee, Hee-Jung;Lim, Bo-Ra;Kim, Hyung-Woo;Kim, Byung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.155-159
    • /
    • 2012
  • The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix and the effects of 5-Fluorouracil (5-FU) in human colorectal adenocarcinoma cells (HT-29). We used human colorectal adenocarcinoma cell line, HT-29 cells. We examined cell death by MTT assay and caspase 3 assay with Sophorae Radix. To examine the inhibitory effects of Sophorae Radix, cell cycle (sub G1) analysis was done the HT-29 cells after three days with Sophorae Radix. The reversibility of Sophorae Radix was examined on one day to five days treatment with $150{\mu}g$ Sophorae Radix. Sophorae Radix inhibited the growth of HT-29 cells in a dose-dependent fashion. Also we showed that Sophorae Radix induced apoptosis in HT-29 cells by MTT assay, caspase 3 assay and sub-G1 analysis. Sophorae Radix combined with 5-FU markedly inhibited the growth of HT-29 cells compared to Sophorae Radix or 5-FU alone. After 3 days treatment of HT-29 cells with Sophorae Radix, the fraction of cells in sub-G1 phase was much higher than that of the control group. Our findings provide insight into unraveling the effects of Sophorae Radix in human colorectal adenocarcinoma cells and developing therapeutic agents against colorectal cancer.

Anti-cancer Effects of Scutellaria barbata in AGS Human Gastric Adenocarcinoma Cells (인체 위암세포주에서 반지련(半枝蓮)의 항암 효능에 관한 연구)

  • Shim, Ji Hwan;Lee, Soojin;Gim, Huijin;Park, Hyun Soo;Kim, Byung Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.2
    • /
    • pp.195-201
    • /
    • 2015
  • The aim of the study is to investigate the anti-cancer effects of Scutellaria barbata in AGS human gastric adenocarcinoma cells. MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay and caspase 3 or 9 activity assay were carried out to examine cell death with Scutellaria barbata. To elucidate the inhibitory effects of Scutellaria barbata, cell cycle (sub-G1) analysis and mitochondrial membrane potential were performed in AGS cells after 24 h incubation with Scutellaria barbata. Scutellaria barbata induced apoptosis in AGS cells by using the MTT assay, the sub-G1 analysis and mitochondrial membrane potential assay. The stronger inhibition effects of AGS cell growth was observed by application of Scutellaria barbata combined with several anti-cancer drugs (paclitaxel, 5-fluorouracil, cisplatin, ectoposide, doxorubicin and docetaxel) in comparison to the application of Scutellaria barbata or anti-cancer drugs. Our findings provide insight into unraveling the effects of Scutellaria barbata in human gastric cancer cells and developing therapeutic agents against gastric cancer.

Anti-Cancer Effects of Oldenlandia diffusa extract on WiDr human colorectal adenocarcinoma cells (백화사설초 추출물의 인체 대장암 세포주에서 항암효능에 관한 연구)

  • Lee, Soojin;Gim, Huijin;Shim, Ji Hwan;Park, Hyun Soo;Kim, Byung Joo
    • Herbal Formula Science
    • /
    • v.23 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Objectives : The purpose of this study was to investigate the anti-cancer effects of Oldenlandia diffusa extract on WiDr human colorectal adenocarcinoma cells. Methods : We examined cell death by (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) MTT assay and the caspase 3 and 9 activity assay with Oldenlandia diffusa extract. To examine the inhibitory effects of Oldenlandia diffusa extract, we performed a cell cycle (sub-G1) analysis and mitochondrial membrane potential for the WiDr cells after 24 hours with Oldenlandia diffusa extract. Results : 1. Oldenlandia diffusa extract induced cell death in WiDr cells. 2. The sub-G1 peak was increased by Oldenlandia diffusa extract in WiDr cells. 3. Oldenlandia diffusa extract leads to increase the mitochondrial membrane depolarization in WiDr cells. 4. Oldenlandia diffusa extract increases caspase 3 and 9 activities in WiDr cells. 5. Oldenlandia diffusa extract combined with several anti-cancer drugs (paclitaxel, 5-fluorouracil, cisplatin, ectoposide, doxorubicin and docetaxel) markedly inhibited the growth of WiDr cells compared to Oldenlandia diffusa extract and anti-cancer drugs alone. Conclusions : Oldenlandia diffusa extract has an apoptotic role in human colorectal cancer cells and a potential role in developing therapeutic agents against colorectal cancer.

Effects of Apoptosis of Sophorae Radix on Human Gastric Adenocarcinoma cells (인체 위암세포에서 고삼의 세포사멸효과)

  • Lim, Bo-Ra;Lee, Hee-Jung;Kim, Min-Chul;Kim, Hyung-Woo;Kim, Byung-Joo
    • Korean Journal of Oriental Medicine
    • /
    • v.18 no.1
    • /
    • pp.85-92
    • /
    • 2012
  • Objective : The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix and the effects of 5-Fluorouracil (5-FU) in human gastric adenocarcinoma cells (AGS). Method : We used human gastric adenocarcinoma cell line, AGS cells. We examined cell death by MTT assay and caspase 3 assay with Sophorae Radix. To examine the inhibitory effects of Sophorae Radix, cell cycle (sub G1) analysis was done the AGS cells after three days with Sophorae Radix. The reversibility of Sophorae Radix was examined on one day to five days treatment with 100 ${\mu}g/ml$ Sophorae Radix. Result : Sophorae Radix inhibited the growth of AGS cells in a dose-dependent fashion. Also we showed that Sophorae Radix induced apoptosis in AGS cells by MTT assay, caspase 3 assay and sub-G1 analysis. Sophorae Radix combined with 5-FU markedly inhibited the growth of AGS cells compared to Sophorae Radix or 5-FU alone. After 3 days treatment of AGS cells with Sophorae Radix, the fraction of cells in sub-G1 phase was much higher than that of the control group. Conclusion : Our findings provide insight into unraveling the effects of Sophorae Radix in human gastric adenocarcinoma cells and developing therapeutic agents against gastric cancer.

Induction of G2/M Arrest of the Cell Cycle by Genistein in Human Bladder Carcinoma and Leukemic Cells (인체 방광암 및 백혈병세포에서 genistein에 의한 세포주기 G2/M arrest 유발에 관한 연구)

  • Kim, Eu-Kyum;Myong, You-Ho;Song, Kwan-Sung;Lee, Ki-Hong;Rhu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.589-597
    • /
    • 2006
  • Genistein, a natural isoflavonoid phytoestrogen, is a strong inhibitor of protein tyrosine kinase and DNA topoisomerase activities. There are several studies documenting molecular alterations leading to cell cycle arrest and induction of apoptosis by genistein as a chemopreventive agent in a variety of cancer cell lines; however, its mechanism of action and its molecular targets on human bladder carcinoma and leukemic cells remain unclear. In the present study, we have addressed the mechanism of action by which genistein suppressed the proliferation of T24 bladder carcinoma and U937 leukemic cells. Genistein significantly inhibited the cell growth and induced morphological changes, and induced the G2/M arrest of the cell cycle in both T24 and U937 cells with a relatively stronger cytotoxicity in U937. The G2/M arrest in T24 cells was associated with the inhibition of cyclin A, cyclin B1 and Cdc25C protein expression without alteration of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1). However, the inhibitory effects of genistein on the cell growth of U937 cells were connected with a marked inhibition of cyclin B1 and an induction of Cdk inhibitor p21 proteins by p53-independent manner. These data suggest that genistein may exert a strong anticancer effect and additional studies will be needed to evaluate the different mechanisms between T24 and U937 cells.

Understanding centrosome amplification in cancer: A pathway toward precision-targeted cancer drug development (암의 중심체 증폭 이해를 통한 표적 항암제 개발)

  • Taekyung Kim
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.950-955
    • /
    • 2023
  • Cell division is an essential process for the survival and development of living organisms. It is critical that duplicated chromosomes are properly segregated into daughter cells during mitosis. The centrosome is the core organelle that forms the microtubule-organizing center (MTOC), which generates the microtubules that make up the mitotic spindle during cell division. The centrosome is also involved in cell signaling and motility. In normal cells, there is one centrosome in G1 that replicates into two in the S phase and matures through G2. During the M phase, duplicated centrosomes move to both ends of the cell, and spindle microtubules that are generated from MTOC move the chromosome to both ends. The cells then split into two to complete the cell division. However, a phenomenon called centrosome amplification (CA), in which the number of centrosomes is higher than normal, is common in cancer cells and can lead to chromosome instability (CIN). This paper discusses the process of centrosome replication and the role of PLK4 in this process. The possible consequences of centrosome amplification and how the PLK4 inhibitor may be able to treat certain types of cancer cells, such as breast cancer and neuroblastoma, will also be discussed.

Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf

  • Ahn, Jun-Ho;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.21 no.2
    • /
    • pp.114-120
    • /
    • 2013
  • Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 ($IC_{50}$ < $0.5{\mu}M$), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 ($IC_{50}$ < $20{\mu}M$). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at $G_0/G_1$ with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.

Effects of Sophorae Radix on Human Gastric and Colorectal Adenocarcinoma Cells -Sophorae Radix and Cancer Cells-

  • Kim, Min-Chul;Lim, Bo-Ra;Lee, Hee-Jung;Kim, Hyung-Woo;Kwon, Young-Kyu;Kim, Byung-Joo
    • Journal of Pharmacopuncture
    • /
    • v.15 no.2
    • /
    • pp.15-19
    • /
    • 2012
  • The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix (SR) and doxorubicin (DOX) in human gastric and colorectal adenocarcinoma cells. We used the human gastric and colorectal adenocarcinoma cell lines (MKN-45 and WIDR cells, respectively). We examined cell death by using the MTT(3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay and the caspase 3 assay with SR. To examine the inhibitory effects of SR, we performed a cell cycle (sub G1) analysis for the MKN-45 and WIDR cells after three days with SR. The reversibility of SR was examined for one-day to five-day treatments with SR. SR inhibited the growth of MKN-45 and WIDR cells in a dosedependent manner. Also, we showed that SR induced apoptosis in MKN-45 and WIDR cells by using the MTT assay, the caspase 3 assay and the sub-G1 analysis. SR combined with DOX markedly inhibited the growth of MKN-45 and WIDR cells compared to SR or DOX alone. After 3 days of treating MKN-45 and WIDR cells with SR, the fraction of cells in the sub-G1 phase was much higher than that of the control group. Our findings provide insights into unraveling the effects of SR on human gastric and colorectal adenocarcinoma cells and into developing therapeutic agents for use against gastric and colorectal adenocarcinomas.