DOI QR코드

DOI QR Code

Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf

  • Ahn, Jun-Ho (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon) ;
  • Lee, Michael (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon)
  • Received : 2013.01.28
  • Accepted : 2013.03.13
  • Published : 2013.03.31

Abstract

Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 ($IC_{50}$ < $0.5{\mu}M$), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 ($IC_{50}$ < $20{\mu}M$). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at $G_0/G_1$ with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.

Keywords

References

  1. Ahn, J.-H., Ahn, S. K. and Lee, M. (2012) The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts. Biochem. Biophys. Res. Commun. 417, 857-863. https://doi.org/10.1016/j.bbrc.2011.12.061
  2. Ahn, J.-H., Eum, K.-H. and Lee, M. (2010) Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts. BMB Rep. 43, 205-211. https://doi.org/10.5483/BMBRep.2010.43.3.205
  3. Ahn, J.-H. and Lee, M. (2011) Suppression of autophagy sensitizes multidrug resistant cells towards Src tyrosine kinase specific inhibitor PP2. Cancer Lett. 310, 188-197. https://doi.org/10.1016/j.canlet.2011.06.034
  4. Blagosklonny, M. V. (2007) Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6, 70-74. https://doi.org/10.4161/cc.6.1.3682
  5. Cagnol, S. and Chambard, J. C. (2010) ERK and cell death: mechanisms of ERK-induced cell death - apoptosis, autophagy and senescence. FEBS J. 277, 2-21. https://doi.org/10.1111/j.1742-4658.2009.07366.x
  6. Corcelle, E., Nebout, M., Bekri, S., Gauthier, N., Hofman, P., Poujeol, P., Fenichel, P. and Mograbi, B. (2006) Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res. 66, 6861-6870. https://doi.org/10.1158/0008-5472.CAN-05-3557
  7. Dhomen, N. and Marais, R. (2009) BRAF signaling and targeted therapies in melanoma. Hematol. Oncol. Clin. North Am. 23, 529-545. https://doi.org/10.1016/j.hoc.2009.04.001
  8. Eisen, T., Ahmad, T., Flaherty, K. T., Gore, M., Kaye, S., Marais, R., Gibbens, I., Hackett, S., James, M., Schuchter, L. M., Nathanson, K. L., Xia, C., Simantov, R., Schwartz, B., Poulin-Costello, M., O'Dwyer, P. J. and Ratain, M. J. (2006) Sorafenib in advanced melanoma: A Phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581-586. https://doi.org/10.1038/sj.bjc.6603291
  9. Engelman, J. A. and Janne, P. A. (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895-2899. https://doi.org/10.1158/1078-0432.CCR-07-2248
  10. Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., O'Dwyer, P. J., Lee, R. J., Grippo, J. F., Nolop, K. and Chapman, P. B. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 908-819.
  11. Gottesman, M. M. (2002) Mechanisms of cancer drug resistanace. Annu. Rev. Med. 53, 615-627. https://doi.org/10.1146/annurev.med.53.082901.103929
  12. Jiang, C. C., Lai, F., Thorne, R. F., Yang, F., Liu, H., Hersey, P. and Zhang, X. D. (2011) MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin. Cancer Res. 17, 721-730. https://doi.org/10.1158/1078-0432.CCR-10-2225
  13. Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., Caponigro, G., Hieronymus, H., Murray, R. R., Salehi-Ashtiani, K., Hill, D. E., Vidal, M., Zhao, J. J., Yang, X., Alkan, O., Kim, S., Harris, J. L., Wilson, C. J., Myer, V. E., Finan, P. M., Root, D. E., Roberts, T. M., Golub, T., Flaherty, K. T., Dummer, R., Weber, B. L., Sellers, W. R., Schlegel, R., Wargo, J. A., Hahn, W. C. and Garraway, L. A. (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972. https://doi.org/10.1038/nature09627
  14. Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728. https://doi.org/10.1093/emboj/19.21.5720
  15. Karbowniczek, M., Cash, T., Cheung, M., Robertson, G. P., Astrinidis, A. and Henske, E. P. (2004) Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J. Biol. Chem. 279, 29930-29937. https://doi.org/10.1074/jbc.M402591200
  16. Kim, Y.-K., Ahn, S. K. and Lee, M. (2012) Differential sensitivity of melanoma cell lines with differing B-Raf mutational status to the new oncogenic B-Raf kinase inhibitor UI-152. Cancer Lett. 320, 215-224. https://doi.org/10.1016/j.canlet.2012.03.006
  17. Ma, X., Piao, S., Wang, D. W., McAfee, Q. W., Nathanson, K. L., Lum, J. J., Li, L. Z. and Amaravadi, R. K. (2011) Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin. Cancer Res. 17, 3478-3489. https://doi.org/10.1158/1078-0432.CCR-10-2372
  18. Maddodi, N., Huang, W., Havighurst, T., Kim, K., Longley, B. J. and Setaluri, V. (2010) Induction of autophagy and inhibition of melanoma growth in vitro and in vivo by hyperactivation of oncogenic BRAF. J. Invest. Dermatol. 130, 1657-1667. https://doi.org/10.1038/jid.2010.26
  19. Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M. and Giannakakou, P. (2005) Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. J. Biol. Chem. 280, 11569-11577. https://doi.org/10.1074/jbc.M413471200
  20. McCubrey J, A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., Lehmann, B., Terrian, D. M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J., Evangelisti, C., Martielli, A. M. and Franklin, R. A. (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biocheim. Biophys. Acta 1773, 1263-1284. https://doi.org/10.1016/j.bbamcr.2006.10.001
  21. Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A. and Lo, R. S. (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973-977. https://doi.org/10.1038/nature09626
  22. Ng, G. and Huang, J. (2005) The significance of autophagy in cancer. Mol. Carcinog. 43, 183-187. https://doi.org/10.1002/mc.20097
  23. Nobili, S., Landini, I., Giglioni, B. and Mini, E. (2006) Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets 7, 861-879. https://doi.org/10.2174/138945006777709593
  24. Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., Kris, M. G. and Varmus, H. (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73. https://doi.org/10.1371/journal.pmed.0020073
  25. Pattingre, S., Bauvy, C. and Codogno, P. (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667-16674. https://doi.org/10.1074/jbc.M210998200
  26. Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. and Codogno, P. (2000) Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992-998. https://doi.org/10.1074/jbc.275.2.992
  27. Seglen, P. O. and Gordon, P. B. (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 79, 1889-1992. https://doi.org/10.1073/pnas.79.6.1889
  28. Shintani, T., Yamazaki, F., Katoh, T., Umekawa, M., Matahira, Y., Hori, S., Kakizuka, A., Totani, K., Yamamoto, K. and Ashida, H. (2010) Glucosamine induces autophagy via an mTOR-independent pathway. Biochem. Biophys. Res. Commun. 391, 1775-1779. https://doi.org/10.1016/j.bbrc.2009.12.154
  29. Su, F., Bradley, W. D., Wang, Q., Yang, H., Xu, L., Higgins, B., Kolinsky, K., Packman, K., Kim, M. J., Trunzer, K., Lee, R. J., Schostack, K., Carter, J., Albert, T., Germer, S., Rosinski, J., Martin, M., Simcox, M. E., Lestini, B., Heimbrook, D. and Bollag, G. (2012) Resistance to selective braf inhibition can be mediated by modest upstream pathway activation. Cancer Res. 72, 969-978. https://doi.org/10.1158/0008-5472.CAN-11-1875
  30. Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., Bremer, R., Gillette, S., Kong, J., Haass, N. K., Sproesser, K., Li, L., Smalley, K. S., Fong, D., Zhu, Y. L., Marimuthu, A., Nguyen, H., Lam, B., Liu, J., Cheung, I., Rice, J., Suzuki, Y., Luu, C., Settachatgul, C., Shellooe, R., Cantwell, J., Kim, S. H., Schlessinger, J., Zhang, K. Y., West, B. L., Powell, B., Habets, G., Zhang, C., Ibrahim, P. N., Hirth, P., Artis, D. R., Herlyn, M. and Bollag, G. (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. U.S.A. 105, 3041-3046. https://doi.org/10.1073/pnas.0711741105
  31. Ullman, E., Fan, Y., Stawowczyk, M., Chen, H. M., Yue, Z. and Zong, W. X. (2008) Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ. 15, 422-425. https://doi.org/10.1038/sj.cdd.4402234
  32. Williams, A., Sarkar, S., Cuddon, P., Ttofi, E. K., Saiki, S., Siddiqi, F. H., Jahreiss, L., Fleming, A., Pask, D., Goldsmith, P., O'Kane, C. J., Floto, R. A. and Rubinsztein, D. C. (2008) Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295-305. https://doi.org/10.1038/nchembio.79
  33. Wu, C. P., Calcagno, A. M. and Ambudkar, S. V. (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr. Mol. Pharmacol. 1, 93-105. https://doi.org/10.2174/1874467210801020093
  34. Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., Ong, C. N., Codogno, P. and Shen, H. M. (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861. https://doi.org/10.1074/jbc.M109.080796

Cited by

  1. Effect of autophagy inhibition on cell viability and cell cycle progression in MDA-MB-231 human breast cancer cells vol.10, pp.2, 2014, https://doi.org/10.3892/mmr.2014.2296
  2. BH3-mimetic gossypol-induced autophagic cell death in mutant BRAF melanoma cells with high expression of p21Cip1 vol.102, pp.1, 2014, https://doi.org/10.1016/j.lfs.2014.02.036
  3. Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.007
  4. Progesterone Increases Apoptosis and Inversely Decreases Autophagy in Human Hepatoma HA22T/VGH Cells Treated with Epirubicin vol.2014, 2014, https://doi.org/10.1155/2014/567148
  5. Concurrent MEK and autophagy inhibition is required to restore cell death associated danger-signalling in Vemurafenib-resistant melanoma cells vol.93, pp.3, 2015, https://doi.org/10.1016/j.bcp.2014.12.003
  6. Paclitaxel-Induced G2/M Arrest via Different Mechanism of Actions in Glioma Cell Lines with Differing p53 Mutational Status vol.12, pp.1, 2016, https://doi.org/10.3923/ijp.2016.19.27
  7. Upregulation of microRNA-1246 is Associated with BRAF Inhibitor Resistance in Melanoma Cells with Mutant BRAF 2017, https://doi.org/10.4143/crt.2016.280
  8. The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells vol.360, pp.2, 2015, https://doi.org/10.1016/j.canlet.2015.02.012
  9. Low inducible expression of p21Cip1 confers resistance to paclitaxel in BRAF mutant melanoma cells with acquired resistance to BRAF inhibitor vol.406, pp.1-2, 2015, https://doi.org/10.1007/s11010-015-2423-1
  10. Advanced Glycation End Products (AGE) Potently Induce Autophagy through Activation of RAF Protein Kinase and Nuclear Factor κB (NF-κB) vol.291, pp.3, 2016, https://doi.org/10.1074/jbc.M115.667576
  11. The siRNA-mediated downregulation of N-Ras sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors vol.392, pp.1-2, 2014, https://doi.org/10.1007/s11010-014-2034-2
  12. Autophagy is involved in recombinant Newcastle disease virus (rL-RVG)-induced cell death of stomach adenocarcinoma cells in vitro vol.47, pp.2, 2015, https://doi.org/10.3892/ijo.2015.3039
  13. Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis vol.27, pp.3, 2013, https://doi.org/10.4062/biomolther.2018.133
  14. Upregulation of S100A9 contributes to the acquired resistance to BRAF inhibitors vol.41, pp.11, 2019, https://doi.org/10.1007/s13258-019-00856-0
  15. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review vol.12, pp.10, 2013, https://doi.org/10.3390/cancers12102801