Browse > Article
http://dx.doi.org/10.4062/biomolther.2013.012

Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf  

Ahn, Jun-Ho (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon)
Lee, Michael (Division of Life Sciences, College of Life Sciences and Bioengineering, University of Incheon)
Publication Information
Biomolecules & Therapeutics / v.21, no.2, 2013 , pp. 114-120 More about this Journal
Abstract
Most patients with mutant B-Raf melanomas respond to inhibitors of oncogenic B-Raf but resistance eventually emerges. To better understand the mechanisms that determine the long-term responses of mutant B-Raf melanoma cells to B-Raf inhibitor, we used chronic selection to establish B-Raf (V600E) melanoma clones with acquired resistance to the new oncogenic B-Raf inhibitor UI-152. Whereas the parental A375P cells were highly sensitive to UI-152 ($IC_{50}$ < $0.5{\mu}M$), the resistant sub-line (A375P/Mdr) displayed strong resistance to UI-152 ($IC_{50}$ < $20{\mu}M$). Immunofluorescence analysis indicated the absence of an increase in the levels of P-glycoprotein multidrug resistance (MDR) transporter in A375P/Mdr cells, suggesting that resistance was not attributable to P-glycoprotein overexpression. In UI-152-sensitive A375P cells, the anti-proliferative activity of UI-152 appeared to be due to cell-cycle arrest at $G_0/G_1$ with the induction of apoptosis. However, we found that A375P/Mdr cells were resistant to the apoptosis induced by UI-152. Interestingly, UI-152 preferentially induced autophagy in A375P/Mdr cells but not in A375P cells, as determined by GFP-LC3 puncta/cell counts. Further, autophagy inhibition with 3-methyladenine (3-MA) partially augmented growth inhibition of A375P/Mdr cells by UI-152, which implies that a high level of autophagy may protect UI-152-treated cells from undergoing growth inhibition. Together, our data implicate high rates of autophagy as a key mechanism of acquired resistance to the oncogenic B-Raf inhibitor, in support of clinical studies in which combination therapy with autophagy targeted drugs is being designed to overcome resistance.
Keywords
UI-152; B-Raf inhibitor; Melanoma; Drug resistance; Autophagy; Cell cycle arrest;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shintani, T., Yamazaki, F., Katoh, T., Umekawa, M., Matahira, Y., Hori, S., Kakizuka, A., Totani, K., Yamamoto, K. and Ashida, H. (2010) Glucosamine induces autophagy via an mTOR-independent pathway. Biochem. Biophys. Res. Commun. 391, 1775-1779.   DOI   ScienceOn
2 Su, F., Bradley, W. D., Wang, Q., Yang, H., Xu, L., Higgins, B., Kolinsky, K., Packman, K., Kim, M. J., Trunzer, K., Lee, R. J., Schostack, K., Carter, J., Albert, T., Germer, S., Rosinski, J., Martin, M., Simcox, M. E., Lestini, B., Heimbrook, D. and Bollag, G. (2012) Resistance to selective braf inhibition can be mediated by modest upstream pathway activation. Cancer Res. 72, 969-978.   DOI
3 Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., Bremer, R., Gillette, S., Kong, J., Haass, N. K., Sproesser, K., Li, L., Smalley, K. S., Fong, D., Zhu, Y. L., Marimuthu, A., Nguyen, H., Lam, B., Liu, J., Cheung, I., Rice, J., Suzuki, Y., Luu, C., Settachatgul, C., Shellooe, R., Cantwell, J., Kim, S. H., Schlessinger, J., Zhang, K. Y., West, B. L., Powell, B., Habets, G., Zhang, C., Ibrahim, P. N., Hirth, P., Artis, D. R., Herlyn, M. and Bollag, G. (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc. Natl. Acad. Sci. U.S.A. 105, 3041-3046.   DOI   ScienceOn
4 Ullman, E., Fan, Y., Stawowczyk, M., Chen, H. M., Yue, Z. and Zong, W. X. (2008) Autophagy promotes necrosis in apoptosis-deficient cells in response to ER stress. Cell Death Differ. 15, 422-425.   DOI   ScienceOn
5 Williams, A., Sarkar, S., Cuddon, P., Ttofi, E. K., Saiki, S., Siddiqi, F. H., Jahreiss, L., Fleming, A., Pask, D., Goldsmith, P., O'Kane, C. J., Floto, R. A. and Rubinsztein, D. C. (2008) Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295-305.   DOI   ScienceOn
6 Wu, C. P., Calcagno, A. M. and Ambudkar, S. V. (2008) Reversal of ABC drug transporter-mediated multidrug resistance in cancer cells: evaluation of current strategies. Curr. Mol. Pharmacol. 1, 93-105.   DOI
7 Wu, Y. T., Tan, H. L., Shui, G., Bauvy, C., Huang, Q., Wenk, M. R., Ong, C. N., Codogno, P. and Shen, H. M. (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J. Biol. Chem. 285, 10850-10861.   DOI
8 McCubrey J, A., Steelman, L. S., Chappell, W. H., Abrams, S. L., Wong, E. W., Chang, F., Lehmann, B., Terrian, D. M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J., Evangelisti, C., Martielli, A. M. and Franklin, R. A. (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biocheim. Biophys. Acta 1773, 1263-1284.   DOI   ScienceOn
9 Nazarian, R., Shi, H., Wang, Q., Kong, X., Koya, R. C., Lee, H., Chen, Z., Lee, M. K., Attar, N., Sazegar, H., Chodon, T., Nelson, S. F., McArthur, G., Sosman, J. A., Ribas, A. and Lo, R. S. (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973-977.   DOI   ScienceOn
10 Ng, G. and Huang, J. (2005) The significance of autophagy in cancer. Mol. Carcinog. 43, 183-187.   DOI   ScienceOn
11 Nobili, S., Landini, I., Giglioni, B. and Mini, E. (2006) Pharmacological strategies for overcoming multidrug resistance. Curr. Drug Targets 7, 861-879.   DOI   ScienceOn
12 Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., Kris, M. G. and Varmus, H. (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73.   DOI   ScienceOn
13 Engelman, J. A. and Janne, P. A. (2008) Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895-2899.   DOI   ScienceOn
14 Pattingre, S., Bauvy, C. and Codogno, P. (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J. Biol. Chem. 278, 16667-16674.   DOI   ScienceOn
15 Petiot, A., Ogier-Denis, E., Blommaart, E. F., Meijer, A. J. and Codogno, P. (2000) Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J. Biol. Chem. 275, 992-998.   DOI   ScienceOn
16 Seglen, P. O. and Gordon, P. B. (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 79, 1889-1992.   DOI   ScienceOn
17 Flaherty, K. T., Puzanov, I., Kim, K. B., Ribas, A., McArthur, G. A., Sosman, J. A., O'Dwyer, P. J., Lee, R. J., Grippo, J. F., Nolop, K. and Chapman, P. B. (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 908-819.
18 Gottesman, M. M. (2002) Mechanisms of cancer drug resistanace. Annu. Rev. Med. 53, 615-627.   DOI   ScienceOn
19 Jiang, C. C., Lai, F., Thorne, R. F., Yang, F., Liu, H., Hersey, P. and Zhang, X. D. (2011) MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin. Cancer Res. 17, 721-730.   DOI
20 Johannessen, C. M., Boehm, J. S., Kim, S. Y., Thomas, S. R., Wardwell, L., Johnson, L. A., Emery, C. M., Stransky, N., Cogdill, A. P., Barretina, J., Caponigro, G., Hieronymus, H., Murray, R. R., Salehi-Ashtiani, K., Hill, D. E., Vidal, M., Zhao, J. J., Yang, X., Alkan, O., Kim, S., Harris, J. L., Wilson, C. J., Myer, V. E., Finan, P. M., Root, D. E., Roberts, T. M., Golub, T., Flaherty, K. T., Dummer, R., Weber, B. L., Sellers, W. R., Schlegel, R., Wargo, J. A., Hahn, W. C. and Garraway, L. A. (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968-972.   DOI   ScienceOn
21 Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y. and Yoshimori, T. (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728.   DOI   ScienceOn
22 Karbowniczek, M., Cash, T., Cheung, M., Robertson, G. P., Astrinidis, A. and Henske, E. P. (2004) Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J. Biol. Chem. 279, 29930-29937.   DOI   ScienceOn
23 Kim, Y.-K., Ahn, S. K. and Lee, M. (2012) Differential sensitivity of melanoma cell lines with differing B-Raf mutational status to the new oncogenic B-Raf kinase inhibitor UI-152. Cancer Lett. 320, 215-224.   DOI   ScienceOn
24 Ma, X., Piao, S., Wang, D. W., McAfee, Q. W., Nathanson, K. L., Lum, J. J., Li, L. Z. and Amaravadi, R. K. (2011) Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin. Cancer Res. 17, 3478-3489.   DOI
25 Maddodi, N., Huang, W., Havighurst, T., Kim, K., Longley, B. J. and Setaluri, V. (2010) Induction of autophagy and inhibition of melanoma growth in vitro and in vivo by hyperactivation of oncogenic BRAF. J. Invest. Dermatol. 130, 1657-1667.   DOI   ScienceOn
26 Marcus, A. I., Peters, U., Thomas, S. L., Garrett, S., Zelnak, A., Kapoor, T. M. and Giannakakou, P. (2005) Mitotic kinesin inhibitors induce mitotic arrest and cell death in taxol-resistant and -sensitive cancer cells. J. Biol. Chem. 280, 11569-11577.   DOI   ScienceOn
27 Blagosklonny, M. V. (2007) Mitotic arrest and cell fate: why and how mitotic inhibition of transcription drives mutually exclusive events. Cell Cycle 6, 70-74.   DOI
28 Ahn, J.-H. and Lee, M. (2011) Suppression of autophagy sensitizes multidrug resistant cells towards Src tyrosine kinase specific inhibitor PP2. Cancer Lett. 310, 188-197.   DOI   ScienceOn
29 Ahn, J.-H., Ahn, S. K. and Lee, M. (2012) The role of autophagy in cytotoxicity induced by new oncogenic B-Raf inhibitor UI-152 in v-Ha-ras transformed fibroblasts. Biochem. Biophys. Res. Commun. 417, 857-863.   DOI   ScienceOn
30 Ahn, J.-H., Eum, K.-H. and Lee, M. (2010) Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts. BMB Rep. 43, 205-211.   DOI   ScienceOn
31 Cagnol, S. and Chambard, J. C. (2010) ERK and cell death: mechanisms of ERK-induced cell death - apoptosis, autophagy and senescence. FEBS J. 277, 2-21.   DOI   ScienceOn
32 Corcelle, E., Nebout, M., Bekri, S., Gauthier, N., Hofman, P., Poujeol, P., Fenichel, P. and Mograbi, B. (2006) Disruption of autophagy at the maturation step by the carcinogen lindane is associated with the sustained mitogen-activated protein kinase/extracellular signal-regulated kinase activity. Cancer Res. 66, 6861-6870.   DOI   ScienceOn
33 Dhomen, N. and Marais, R. (2009) BRAF signaling and targeted therapies in melanoma. Hematol. Oncol. Clin. North Am. 23, 529-545.   DOI   ScienceOn
34 Eisen, T., Ahmad, T., Flaherty, K. T., Gore, M., Kaye, S., Marais, R., Gibbens, I., Hackett, S., James, M., Schuchter, L. M., Nathanson, K. L., Xia, C., Simantov, R., Schwartz, B., Poulin-Costello, M., O'Dwyer, P. J. and Ratain, M. J. (2006) Sorafenib in advanced melanoma: A Phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581-586.   DOI   ScienceOn