Browse > Article
http://dx.doi.org/10.3831/KPI.2012.15.2.015

Effects of Sophorae Radix on Human Gastric and Colorectal Adenocarcinoma Cells -Sophorae Radix and Cancer Cells-  

Kim, Min-Chul (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
Lim, Bo-Ra (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
Lee, Hee-Jung (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
Kim, Hyung-Woo (Division of Pharmacology, Pusan National University School of Korean Medicine)
Kwon, Young-Kyu (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
Kim, Byung-Joo (Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine)
Publication Information
Journal of Pharmacopuncture / v.15, no.2, 2012 , pp. 15-19 More about this Journal
Abstract
The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix (SR) and doxorubicin (DOX) in human gastric and colorectal adenocarcinoma cells. We used the human gastric and colorectal adenocarcinoma cell lines (MKN-45 and WIDR cells, respectively). We examined cell death by using the MTT(3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay and the caspase 3 assay with SR. To examine the inhibitory effects of SR, we performed a cell cycle (sub G1) analysis for the MKN-45 and WIDR cells after three days with SR. The reversibility of SR was examined for one-day to five-day treatments with SR. SR inhibited the growth of MKN-45 and WIDR cells in a dosedependent manner. Also, we showed that SR induced apoptosis in MKN-45 and WIDR cells by using the MTT assay, the caspase 3 assay and the sub-G1 analysis. SR combined with DOX markedly inhibited the growth of MKN-45 and WIDR cells compared to SR or DOX alone. After 3 days of treating MKN-45 and WIDR cells with SR, the fraction of cells in the sub-G1 phase was much higher than that of the control group. Our findings provide insights into unraveling the effects of SR on human gastric and colorectal adenocarcinoma cells and into developing therapeutic agents for use against gastric and colorectal adenocarcinomas.
Keywords
Sophorae Radix; human gastric and colorectal adenocarcinoma cells; MKN-45; WIDR cells; doxorubicin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim HA, You HK, Shin HS, Kim YC, Kang TH, Yu HH, et al. Effects of aqueous extract of Sophora flavescens on the expression of cell cycle regulatory proteins in human oral mucosal fibroblasts. Am J Chin Med. 2003;31(4):563-72.   DOI   ScienceOn
2 Chui CH, Lau FY, Tang JC, Kan KL, Cheng GY, Wong RS, et al. Activities of fresh juice of Scutellaria barbata and warmed water extract of Radix Sophorae Tonkinensis on antiproliferation and apoptosis of human cancer cell lines. Int J Mol Med. 2005;16(2):337-41.
3 Long G, Wang G, Ye L, Lin B, Wei D, Liu L, et al. Important role of TNF-alpha in inhibitory effects of Radix Sophorae Flavescentis extract on vascular restenosis in a rat carotid model of balloon dilatation injury. Planta Med. 2009;75(12):1293-9.   DOI   ScienceOn
4 Wang S, Sun M, Zhang Y, Du H, He L. A new A431/cell membrane chromatography and online high performance liquid chromatography/mass spectrometry method for screening epidermal growth factor receptor antagonists from Radix sophorae flavescentis. J Chromatogr A. 2010;1217(32):5246-52.   DOI   ScienceOn
5 Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. FASEB J. 1996;10(5):587-97.   DOI
6 Liu D, Xin X, Su DH, Liu J, Wei Q, Li B, et al. Two new lavandulyl flavonoids from Sophora flavescens. Nat Prod Commun. 2010;5(12):1889-91.
7 Piao XL, Piao XS, Kim SW, Park JH, Kim HY, Cai SQ. Identification and characterization of antioxidants from Sophora flavescens. Biol Pharm Bull. 2006;29(9):1911-5.   DOI   ScienceOn
8 Jin JH, Kim JS, Kang SS, Son KH, Chang HW, Kim HP. Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens. J Ethnopharmacol. 2010;127(3):589-95.   DOI   ScienceOn
9 Son JK, Park JS, Kim JA, Kim Y, Chung SR, Lee SH. Prenylated flavonoids from the roots of Sophora flavescens with tyrosinase inhibitory activity. Planta Med. 2003;69(6):559-61.   DOI   ScienceOn
10 Kim SJ, Son KH, Chang HW, Kang SS, Kim HP. Tyrosinase inhibitory prenylated flavonoids from Sophora flavescens. Bio Pharm Bull. 2003;26(9):1348-50.   DOI   ScienceOn
11 Ding P, Chen D, Bastow KF, Nyarko AK, Wang X, Lee KH. Cytotoxic isoprenylated flavonoids from the roots of Sophora flavescens. Helv Chim Acta. 2004;87(1):2574-80.   DOI   ScienceOn
12 Sato S, Takeo J, Aoyama C, Kawahara H. Na+-glucose cotransporter (SGLT) inhibitory flavonoids from the roots of Sophora flavescens. Bioorg Med Chem. 2007;15(10):3445-9.   DOI   ScienceOn
13 Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991:139(2):271-9.   DOI   ScienceOn
14 Wang BJ, Won SJ, Yu ZR, Su CL. Free radical scavenging and apoptotic effects of Cordyceps sinensis fractionated by supercritical carbon dioxide. Food Chem Toxicol. 2005:43(4):543-52.   DOI   ScienceOn
15 Ming Y, Chen Z, Chen L, Lin D, Tong Q, Zheng Z, et al. Ginsenoside compound K attenuates metastatic growth of hepatocellular carcinoma, which is associated with the translocation of nuclear factor-${\kappa}B$ p65 and reduction of matrix metalloproteinase-2/9. Planta Med. 2011;77(5):428-33.   DOI   ScienceOn
16 Hotz MA, Gong J, Traganos F, Darzynkiewicz Z. Flow cytometric detection of apoptosis: comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry. 1994;15(3):237-44.   DOI   ScienceOn
17 Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods. 2000;243(1-2):167-90.   DOI   ScienceOn
18 Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J. 1997;16(9):2271-81.   DOI   ScienceOn
19 Chang HM, But PPH. Pharmacology and applications of Chinese materia medica. Singapore: World Scientific; 1986. p.736-7.
20 Ueno A, Morinaga K, Fukushima S, Iitaka Y, Koiso Y, Okuda S. Studies on lupin alkaloids. VI. Isolation and structure of (+)-isomatrine. Chem Pharm Bull. 1975;26(11):2560-6.
21 Wu LJ, Miyase T, Ueno A, Kuroyanagi M, Noro T, Fukushima S. Studies on the constituents of Sophora flavescens. Ait. III. Chem Pharm Bull. 1985;33:3231-38.   DOI
22 Kyogoku K, Hatayama K, Komatsu M. Constituents of Chinese crude drug Kushen (the root of Sophora flavescens Ait.). Isolation of five new flavonoids and formononetin. Chem Pharm Bull. 1973;21(12):2733-8.   DOI   ScienceOn
23 Yamamoto H, Ichimura M, Ishikawa N, Tanaka T, Iinuma M, Mizuno M. Localization of prenylated flavonoids in Sophora flavescens var. angustifolia plants. Phytochemistry. 1991;30:1732-8.   DOI   ScienceOn
24 Kang TH, Jeong SJ, Ko WG, Kim NY, Lee BH, Inagaki M, et al. Cytotoxic lavandulyl flavanones from Sophora flavescens. J Nat Prod. 2000;63(5):680-1.   DOI   ScienceOn
25 Yamahara J, Mochizuki M, Fujimura T, Takaishi Y, Yoshida M, Tomimatsu T, et al. Antiulcer action of Sophora flavescens root and an active constituent. I. J Ethnopharmacol. 1990;29(2):173-7.   DOI   ScienceOn
26 Ding Y, Tian RH, Kinjo J, Nohara T, Kitagawa I. Three new oleanene glycosides from Sophora flavescens. Chem Pharm Bull. 1992;40(11):2990-4.   DOI   ScienceOn
27 Woo ER, Kwak JH, Kim HJ, Park H. A new prenylated flavonol from the roots of Sophora flavescens. J Nat Prod. 1998;61(12):1552-4.   DOI   ScienceOn
28 Fidler IJ, Kripke ML. Metastasis results from preexisting variant cells within a malignant tumor. Science. 1977;197(4306):893-5.   DOI
29 Resende C, Thiel A, Machado JC, Ristimaki A. Gastric cancer: basic aspects. Helicobacter. 2011;16(Suppl1):38-44.   DOI   ScienceOn
30 Yamada T. Textbook of Gastroenterology, 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 1999. p.1500-20.
31 Nagase H, Woessner JF Jr. Matrix metalloproteinases. J Biol Chem. 1999:274(31):21491-4.   DOI
32 Braun-Falco M, Holtmann C, Lordick F, Ring J. [Follicular drug reaction from cetuximab: a common side effect in the treatment of metastatic colon carcinoma]. Hautarzt. 2006;57(8):701-4. [In German]   DOI
33 Kelloff GJ, Crowell JA, Steele VE, Lubet RA, Boone CW, Malone WA, et al. Progress in cancer chemoprevention. Ann N Y Acad Sci. 1999;889:1-13.   DOI
34 Park JG, Park KJ, Ahn YO, Song IS, Choi KW, Moon HY, et al. Risk of gastric cancer among Korean familial adenomatous polyposis patients. Report of three cases. Dis Colon Rectum. 1992;35(10);996-8   DOI
35 Lin SS, Lai KC, Hsu SC, Yang JS, Kuo CL, Lin JP, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. 2009;285(2):127-33.   DOI   ScienceOn
36 Yodkeeree S, Garbisa S, Limtrakul P. Tetrahydrocurcumin inhibits HT1080 cell migration and invasion via downregulation of MMPs and uPA. Acta Pharmacol Sin. 2008;29(7):853-60.   DOI   ScienceOn
37 Pitchakarn P, Suzuki S, Ogawa K, Pompimon W, Takahashi S, Asamoto M, et al. Kuguacin J, a triterpeniod from Momordica charantia leaf, modulates the progression of androgenindependent human prostate cancer cell line, PC3. Food Chem Toxicol. 2012;50(3-4):840-7.   DOI   ScienceOn