• Title/Summary/Keyword: Cell selectivity

Search Result 211, Processing Time 0.034 seconds

Biochip System for Environmental Monitoring using Nanobio Technology (나노바이오기술을 이용한 환경모니터링용 바이오칩 시스템)

  • Kim, Young-Kee;Min, Jun-Hong;Oh, Byung-Keun;Choi, Jeong-Woo
    • KSBB Journal
    • /
    • v.22 no.6
    • /
    • pp.378-386
    • /
    • 2007
  • Bio-sensing devices, which are basically integrated and miniaturized assay systems consisted of bioreceptor and signal transducer, are advantageous in several ways. In addition to their high sensitivity, selectivity, simplicity, multi-detection capability, and real time detection abilities, they are both very small and require relatively inexpensive equipments. Two core technologies are required to develop bio-sensing devices; the fabrication of biological receptor module (both of receptor development and immobilisation of them) and the development of signal transducing instruments containing signal generation technique. Various biological receptors, such as enzymes, DNA/RNA, protein, and cell were tried to develop bio-sensing devices. And, the signal transducing instruments have also been extensively studied, especially with regard to electrochemical, optical, and mass sensitive transducers. This article addresses bio-sensing devices that have been developed in the past few years, and also discusses possible future major trends in these devices.

Chronicles of EGFR Tyrosine Kinase Inhibitors: Targeting EGFR C797S Containing Triple Mutations

  • Duggirala, Krishna Babu;Lee, Yujin;Lee, Kwangho
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase widely expressed in many cancers such as non-small cell lung cancer (NSCLC), pancreatic cancer, breast cancer, and head and neck cancer. Mutations such as L858R in exon 21, exon 19 truncation (Del19), exon 20 insertions, and others are responsible for aberrant activation of EGFR in NSCLC. First-generation EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib have clinical benefits for EGFR-sensitive (L858R and Del19) NSCLC patients. However, after 10-12 months of treatment with these inhibitors, a secondary T790M mutation at the gatekeeper position in the kinase domain of EGFR was identified, which limited the clinical benefits. Second-generation EGFR irreversible inhibitors (afatinib and dacomitinib) were developed to overcome this T790M mutation. However, their lack of selectivity toward wild-type EGFR compromised their clinical benefits due to serious adverse events. Recently developed third-generation irreversible EGFR TKIs (osimertinib and lazertinib) are selective toward driving mutations and the T790M mutation, while sparing wild-type EGFR activity. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S, the key residue cysteine that forms covalent bonds with irreversible inhibitors. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are not effective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism.

Pathogen-Imprinted Polymer Film Integrated probe/Ti3C2Tx MXenes Electrochemical Sensor for Highly Sensitive Determination of Listeria Monocytogenes

  • Xiaohua, Jiang;Zhiwen, Lv;Wenjie, Ding;Ying, Zhang;Feng, Lin
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.431-437
    • /
    • 2022
  • As one of the most hazardous and deadliest pathogens, Listeria monocytogenes (LM) posed various serious diseases to the human being, thus designing effective strategy for its detection is of great significance. In this work, by preparing Ti3C2Tx MXenes nanoribbon (Ti3C2TxR) as carrier and selecting thionine (Th) acted simultaneously as signal probe and functional monomer, a LM pathogen-imprinted polymers (PIP) integrated probe electrochemical sensor was design to monitor LM for the first time, that was carried out through the electropolymerization of Th on the Ti3C2TxR/GCE surface in the existence of LM. Upon eluting the templates from the LM imprinted cavities, the fabricated PIP/Ti3C2TxR/GCE sensor can rebound LM cells effectively. By recording the peak current of Th as the response signal, it can be weakened when LM cell was re-bound to the LM imprinted cavity on PIP/Ti3C2TxR/GCE, and the absolute values of peak current change increase with the increasement of LM concentrations. After optimizing three key parameters, a considerable low analytical limit (2 CFU mL-1) and wide linearity (10-108 CFU mL-1) for LM were achieved. In addition, the experiments demonstrated that the PIP/Ti3C2TxR sensor offers satisfactory selectivity, reproducibility and stability.

Suppression of Migration and Invasion by Alnus hirsuta in Human Hepatocellular Carcinoma Cells

  • Bo-Ram Kim;Su Hui Seong;Tae-Su Kim;Jin-Ho Kim;Chan Seo;Ha-Nul Lee;Sua Im;Jung Eun Kim;Ji Min Jung;Jung Up Park;Kyung-Min Choi;Jin-Woo Jeong
    • Korean Journal of Plant Resources
    • /
    • v.36 no.3
    • /
    • pp.207-218
    • /
    • 2023
  • Hepatocellular carcinoma (HCC) has a poor prognosis and high metastasis and recurrence rates. Although extracts of Alnus hirsuta (Turcz. ex Spach) Rupr. (AH) have been demonstrated to possess potential anti-inflammatory and anti-cancer activities, the underlying mechanism of AH in HCC treatment remains to be elucidated. We investigated the effects and potential mechanisms of AH on migration and invasion of Hep3B cells. Within the non-cytotoxic concentration range, AH significantly inhibited motility and invasiveness of Hep3B cells in a concentration-dependent manner. Inhibitory effects of AH on cell invasiveness are associated with tightening of tight junctions (TJs), as demonstrated by an increase in transepithelial electrical resistance. Immunoblotting indicated that AH decreased levels of claudins, which form major components of TJs and play key roles in the control and selectivity of paracellular transport. Furthermore, AH inhibited the expression and activity of matrix metalloproteinase (MMP)-2 and MMP-9 and simultaneously increased the levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2. These effects were related to inactivation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in Hep3B cells. Therefore, AH inhibits migration and invasion of Hep3B cells by inhibiting the activity of MMPs and tightening TJs through suppression of claudin expression, possibly by suppressing the PI3K/AKT signaling pathway.

Effects of Aged Black Garlic Extracts on the Tight Junction Permeability and Cell Invasion in Human Gastric Cancer Cells (흑마늘 추출물이 인체위암세포의 tight junction 투과성 조절과 세포 침윤성 억제에 미치는 영향)

  • Shin, Dong-Yeok;Yoon, Moo-Kyoung;Choi, Young-Whan;Gweon, Oh-Cheon;Kim, Jung-In;Choi, Tae-Hyun;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.528-534
    • /
    • 2010
  • Garlic (Allium sativum) has been well-known as a folk remedy for a variety of ailments since ancient times, and it is well documented that enhanced garlic consumption leads to a decrease in incidences of cancer. Tight junctions (TJs) are critical structures for the maintenance of cellular polarity, acting as paracellular permeability barriers and playing an essential role in regulating the diffusion of fluid, electrolytes and macromolecules through the paracellular pathway. Matrix metalloproteinases (MMPs) have been implicated as possible mediators of invasiveness and metastasis in some cancers. In this study, we investigated the potential effects of water extract of aged black garlic (ABG) on the correlation between tightening of TJs and anti-invasive activity in human gastric carcinoma AGS cells. The inhibitory effects of ABG on cell motility and invasiveness were found to be associated with increased tightness of TJs, which was demonstrated by an increase in transepithelial electrical resistance. Additionally, the activities of MMP-2 and -9 in AGS cells were inhibited by treatment with ABG, and this was also correlated with a decrease in the expression of their mRNA and proteins. Furthermore, RT-PCR and immunoblotting results indicated that ABG repressed the levels of the claudin proteins, major components of TJs that play a key role in the control and selectivity of paracellular transport. In conclusion, these results suggest that ABG treatment may inhibit tumor metastasis and invasion, and therefore may act as a dietary source to decrease the risk of developing cancer.

Overview of Autophagy in Plant Cells (식물 세포의 자식작용에 대한 개요)

  • Lee, Han Nim;Chung, Taijoon
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.209-217
    • /
    • 2014
  • In a variety of eukaryotic cells, autophagy sequesters a portion of the cytoplasm and targets it to a lytic compartment for degradation in bulk. Autophagy is a dynamic process for degrading cytoplasmic cargoes with various degrees of selectivity, and its activity is tightly regulated in a nutrient- and development-dependent manner. Autophagy research has drawn much attention since autophagy not only is an interesting cell biological phenomenon but also has great potential for medical and agricultural applications. For example, autophagy is associated with cancers and neurodegenerative diseases in human and mammalian cells and is also suggested in remobilization of nutrients during the senescence of plant leaves. In this general review, we describe genetic components of the core autophagic machinery conserved among yeast, animals, and plants and briefly explain how these components are responsible for major steps in plant autophagy. We discuss four common features of autophagic processes: (i) autophagy as a degradation pathway, (ii) the concept of flux in autophagy research, (iii) dependency on developmental and nutritional cues, and (iv) diversity of autophagy, focusing on selective types of autophagy. We also summarize cell biological and physiological functions of plant autophagy. Our intention is to provide a quick guide to autophagy for those who are new to autophagy research.

Surface Modification of Nafion by Layer-by-Layer Self-Assembled Films of Polyaniline and Sulfonated Poly(ether sulfone) for Direct Methanol Fuel Cell (직접 메탄올 연료전지용 나피온 막의 폴리아닐린/Sulfonated Poly(ether sulfone) 다층 자기조립 박막에 의한 표면 개질)

  • Ok, Jeong-Rim;Kim, Dong-Wook;Lee, Chang-Jin;Kang, Yong-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.256-261
    • /
    • 2008
  • In this study, Nafion membrane was modified to prevent methanol crossover by layer-by-layer self assembly using polyaniline (PANi) as a polycation and sulfonated poly(ether sulfone) (SPES) as a polyanion onto the Nafion surface. Since PANi and SPES possess thermal and chemical stability and rigid backbone, their layer-by-layer self-assembled films on the Nafion are expected to reduce methanol permeability and to increase mechanical stability. UV-Vis absorption spectroscopy verified a linear build-up of the multilayers of PANi and SPES. We found that the thickness per bilayer was about 10 nm by TEM measurement. Although modified Nafion membrane exhibited 15% decrease of proton conductivity, it reduceded 67% of methanol permeability compared to that of the pristine Nafion membrane, resulting in 2.5 times larger selectivity. At the performance test of the fuel cell using 5M methanol as a fuel, the modified Nafion membrane showed 2.4 times higher maximum power density at $30^{\circ}C$ and 1.4 times larger at $60^{\circ}C$ than the pristine Nafion.

Anti-invasive Activity of Human Breast Carcinoma Cells by Genistein through Modulation of Tight Junction Function (인체유방암세포의 tight junction 기능 조절을 통한 genistein의 암세포 침윤 억제 효과)

  • Kim, Sung-Ok;Jeang, Yang-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1200-1208
    • /
    • 2009
  • Tight junctions (TJs) that act as paracellular permeability barriers play an essential role in regulating the diffusion of fluid, electrolytes and macromolecules through the paracellular pathway. In this study, we investigated the correlation between the tightening of TJs, permeability and the invasive activity of genistein - a bioactive isoflavone of soybeans - in human breast carcinoma MCF-7 and MDA-MB-231 cells. The inhibitory effects of genistein on cell proliferation, motility and invasiveness were found to be associated with the increased tightness of the TJs, which was demonstrated by an increase in transepithelial electrical resistance and a decrease in paracellular permeability. Additionally, the immunoblotting results indicated that genistein repressed the levels of the proteins that comprise the major components of TJ, claudin-3 and claudin-4, which play a key role in the control and selectivity of paracellular transport. Furthermore, genistein decreased the metastasis-related gene expressions of insulin like growth factor-1 receptor and snail, while concurrently increasing that of thrombospondin-1 and E-cadherin. In addition, we demonstrated that claudins play an important role in the anti-motility and invasiveness of genistein using claudin-3 small interfering RNA. Taken together, our results indicate a possible role for genistein as an inhibitor of cancer cell invasion through the tightening of TJs, which may counteract the up-regulation of claudins. In addition, our results indicate that this may be beneficial for the inhibition of tumor metastasis.

Foliage Contact Herbicidal Activity of Dehydrocostus lactone Derived from Saussurea lappa (목향(Saussurea lappa) 유래 Dehydrocostus lactone의 경엽 접촉 살초 활성)

  • Cho, Kwang-Min;An, Xue-Hua;Chon, Jae-Kwan;Kim, Hyo-Sun;Chun, Jae-Chul
    • Korean Journal of Weed Science
    • /
    • v.30 no.4
    • /
    • pp.421-428
    • /
    • 2010
  • A foliage contact herbicidal substance was separated from ethyl ether fraction in n-hexane extract of Saussurea lappa roots and identified as dehydrocostus lactone [(3aS,6aR,9aR,9bS)-3,6,9-trimethylidene-3a,4,5,6a,7,8,9a,9b-octahydroazuleno[5,4-d]furan-2-one](DHCL). When DHCL at 4,000 ppm was foliage-applied to two grasses and two broadleaf plants, greater than 85% necrotic injury was obtained from large crabgrass, maize and soybean, whereas only about 40% necrotic injury appeared in black nightshade, indicating that DHCL has no gross morphological selectivity, but shows difference in contact response among the plant species tested. Conductivity in incubation medium of the leaf disks treated with DHCL increased as the incubation time continued. Relatively low contact injury in black nightshade as compared with the other three plant species tested was attributed to decrease in absorption of DHCL due to relatively high amount of cuticle. DHCL did not require light in the herbicidal action and there were no inhibitory effects on seed germination and cell elongation. Acetyl-CoA carboxylase activity was inhibited by 30% and 58% at $100\;{\mu}M$ and $1000\;{\mu}M$ DHCL, respectively. These results suggested that the herbicidal action of DHCL was related with inhibition of fatty acid synthesis which in turn caused to weaken cell membrane integrity.

Preparation of CuO-CeO2 mixed oxide catalyst by sol-gel method and its application to preferential oxidation of CO (졸-겔법에 의한 CuO-CeO2 복합 산화물 촉매의 제조 및 CO의 선택적 산화반응에 응용)

  • Hwang, Jae-Young;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.883-891
    • /
    • 2017
  • For the preferential oxidation of CO contained in the fuel of polymer electrolyte membrane fuel cell (PEMFC), CuO-$CeO_2$ mixed oxide catalysts were prepared by the sol-gel and co-precipitation methods to replace noble metal catalysts. In the catalyst preparation by the sol-gel method, Cu/Ce ratio and hydrolysis ratio were changed. The catalytic activity of the prepared catalysts was compared with the catalytic activity of the noble metal catalyst($Pt/{\gamma}-Al_2O_3$). Among the catalysts prepared with different Cu/Ce ratios, the catalyst whose Cu/Ce ratio was 4:16 showed the highest CO conversion (90%) and selectivity (60%) at $150^{\circ}C$. As the hydrolysis ratio was increased in the catalyst preparation, surface area increased, and catalytic activity also increased. The highest CO conversions with the CuO-$CeO_2$ mixed oxide catalyst prepared by the co-precipitation method and the noble metal catalyst (1wt% $Pt/{\gamma}-Al_2O_3$) were 82 and 81% at $150^{\circ}C$, respectively, whereas the highest CO conversion with the CuO-$CeO_2$ mixed oxide catalyst prepared by the sol-gel method was 90% at the same temperature. This indicates that the catalyst prepared by the sol-gel method shows higher catalytic activity than the catalysts prepared by the co-precipitation method and the noble metal catalyst. From the CO-TPD experiment, it was found that the catalyst having CO desorption peak at a lower temperature ($140^{\circ}C$) revealed higher catalytic activity.